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Abstract: The paper presents a design methodology and low-cost implementing solution 
for interlaced numeric and adaptive control of machining operations on vertical milling 
machines. The low-cost attribute of the NC contouring function resides in generating 
machining trajectories from successive grey level image processing of the part's model 
with an estimated cutting depth, feedrate and spindle speed. Two of these reference 
signals, the feedrate and spindle speed, are then periodically altered as control variables 
according to a low-cost implementing solution of a machining optimization algorithm. 
The approach used for real-time updating the feedrate and spindle speed is based on 
nonlinear, inequality constrained multivariable optimal control (ACO) and modelling of 
the cutting process. The image-based contouring and machine load-based optimization 
functions are embedded in a multitasking controller. A low cost implementing solution is 
proposed by extending the CNC unit with a signal acquisition and processing ACO unit 
performing the fusion of electric and mechanical data. Experimental results are included 
for the 3D milling of a car body mould. Copyright © 2007 IFAC 
 
Keywords: embedded systems, CNC, image interpolation, optimal control, non-linear 
control. 

 
 
 
 

 
1. INTRODUCTION 

 
Surfaces that can be described by an arbitrary 
implicit function z = f(x, y) may be stored as 
greyscale images, where the pixel’s coordinates in 
the image map to the real variables x and y, and the 
grey level encodes the z value. Usually the black 
colour maps to the lowest z level and the white 
colour maps to the highest. Because pixel 
coordinates are integers, a pixel-to-mm ratio must be 
used. 
 
Most computer graphics software use 8 bit greyscale 
images and high end ones can use 16 bit greyscale 
images. For 16 bit images, the z level can have 65536 
discrete values, and this means, for a 100 millimetre 
tall work piece, a maximum precision of 0.0015 mm. 
The precision in XY plane is given by the image 

resolution. In order to get a precision of 0.01 mm for 
a 100x100 mm part, a 10000x10000 pixels image is 
needed. This makes the pixel model suitable only for 
low-precision machining applications, such as free-
form artwork pieces. 
 

The depth map images can be obtained through 
passive acquisition techniques like laser scanners and 
active acquisition techniques like structured light or 
generated with 3D modelling software packages. 
 
Short range laser scanners are used to capture the 
geometry of three-dimensional objects. They are 
used for reverse engineering manufactured objects, 
and for digitizing objects of scientific, artistic or 
historical importance for archiving and analysis. 
Most of the short range laser scanners are 
instruments using CCD cameras where distance 



 

     

measurement is based on the “triangulation” 
principle. 
 
Laser range scanners have limitations, including 
noise and limits on resolution. Noise in the depth 
images from laser range scans comes from several 
sources, including quantization and noise in the 
video imaging system, laser speckle (caused by 
random reinforcement of the coherent light of the 
laser rejected from a rough surface), systematic error 
in peak detection (caused by surface curvature and 
colour), and the instability of the computation of 
point locations by triangulation. 
 
Currently the interest is to find low-cost solutions 
replacing with sufficient accuracy the sophisticated 
mathematical CNC processors which describe the 3D 
complex surfaces or shapes, being then mapped to G-
code by CNC post processors. The research reported 
in the paper describes a method for 3D complex 
shape modelling (e.g. negative mould shapes) by 
generating iso-level tool paths from grey level depth 
map images binarized with variable thresholds. Tool 
correction is then applied by simply gradient 
computing in the 2D greyscale cutter shape image. 
 
For individual iso-level tool paths a low-cost control 
solution is proposed at G-phrase level by discretely 
altering the feedrate and main spindle speed ( nw, ), 
which optimizes cost functions like the machining 
throughput and balances the machine tool loading. 
 
 

3. 21/2 SHAPE COUNTOURING FROM DEPTH 
MAP IMAGES  

 
The 3D surface of a model to be machined is scanned 
with a laser range finder device: a vertical stripe of 
laser light is moved across the model object surface, 
and captured by a video camera. Along each 
horizontal scan line of the video frame, the brightest 
spot is taken to be the point at which the laser stripe 
"hits" the surface. This brightness peak is detected at 
sub-pixel resolution. The relative positions of the 
laser and the video camera are used to find the three-
dimensional coordinates of the brightest spot by 
triangulation. So, the x-coordinate of each point in 
the output depth image is determined by the position 
of the laser stripe for a particular video frame, the y-
coordinate corresponds to a raster line in the video 
frame, and the depth value is computed from the 
brightness peak detected along the raster line in the 
video frame (see Fig. 1). 

 
Fig. 1. Depth map image of a F1 car body model. 

A solution has been developed for 21/2 milling of 
surfaces stored as greyscale height-map images. This 
method allows one to compute cutter compensation 
for different cutter shapes, including but not limited 
to flat end mills, ball end mills, and flat end mills 
with corner radius, known as bull end mills.  
 
The negative image from which the 21/2 object mould 
will be machined is obtained by complementing the 
brightness peaks stored in each point of the stored 
depth map image (Fig. 2). 
 

 
Fig. 2. Negative depth map image of the F1 car. 
 
Once the negative depth map image created, the 
dimensions of the part to be machined can be set by 
specifying the pixel to mm ratio and the depth of cut. 
The tool shape is defined; based on that, the program 
computes the surface on which the tool tip is moving 
such that the tool is always tangent to the model. 
 
The algorithm is based on the following idea: at 
every location in the XY plane (i.e. any pixel in the 
image) one has to compute the depth which should 
be reached by the milling cutter, in order to be 
tangent to the surface. The shape of the milling cutter 
is modelled as a greyscale image, using the same 
scale factors as for the surface to be milled. The 
principle of discrete cutter compensation based on 
gradient computing in the 2D greyscale cutter shape 
image is given in Fig. 3. 
 

   
 
Fig. 3. Discrete cutter compensation (section). 

Greyscale representation of the cutter shape. 
 
For roughing cuts only tool paths at constant Z level 
are used, and a flat end mill. First a binary image is 
obtained by thresholding the original greyscale 
surface at the desired Z level (Fig. 4). A contour 
detection algorithm is then applied for each binary 
image. To achieve a small offset between the cutter 
and the ideal model, the offsets are computed using a 
larger cutter radius, i.e. by adding the offset value to 
the actual cutter radius. 



 

     

 
 
Fig. 4. Thresholded F1 image for Z = −5mm. The 

detected contour and the tool trajectory. 
 
After the roughing cycle has been executed, new tool 
paths must be generated for the finishing stage. The 
finishing cycle can be optimally done by using a 
combination of three possible types of iso parametric 
tool paths. The cutting depth (distance between the 
cuts) can be defined by the user such as to provide a 
good quality of the final machined surface.  
 
Iso parametric tool paths can be generated easily by 
basic image manipulation operations. Tool paths 
having the Z parameter constant (iso-level curves) 
can be computed as previously described. But for the 
finishing phase it is recommended to use a smaller 
distance between the iso-level curves.  
 
A tool path having the X parameter constant can be 
obtained by extracting a column from the image. In 
the same way, a tool path with the Y parameter 
constant is obtained by extracting a line from the 
image. Toolpaths that follow a constant direction in 
XY plane can be obtained by first computing the 
points of the 2D line along that direction using the 
Bresenham algorithm (Park, 2005), and reading the 
grey values (heights) from these points (see Fig. 5). 
 

 
 
Fig. 5. Simulation of a finished part using only iso-

level toolpaths. 
 
After defining the operations for the roughing and 
finishing stages of part machining, the G-code is 
generated the TAP format.  
 
Arcs can be in only one quadrant; if a generated arc 
spreads on more quadrants, the conversion program 
will decompose the big arc in several smaller arcs, 
each of them in a single quadrant. Arcs having the 
radius bigger than the superior limit of the CNC 
machine (for the EMCO machine used, the limit 
radius value is 200 mm) are approximated by lines.  

 
3. THE INEQUALITY CONSTRAINED OPTIMAL 

CONTROL (ACO) OF MACHINING  
 
The cutting productivity is considered as quality 
function for each one of the 2D closed XY roughing 
paths ip approximating one locus of spatial points of 
same grey level (points of depth jiii ZZZ Δ−= −1 ,  
in the part model image). The first paths to be 
machined correspond to the loci of nearest points 
relative to the range sensor (grey level value 0Z ), 
with cutting depth 0Δ . If the furthest image points 
relative to the sensor have a grey level fZ , then, by 
piecewise estimating the grey level gradient in the 
point depths range fZZ ...0 , the number of C cutting 
passes is computed to plan the 21/2 approximation of 
3D machining with cutting depths jΔ , such that 

0ZZc fjj j −=Δ⋅∑ , and Cc
j j =∑ , and jc  

roughing paths ip have the same cutting depth jΔ . 
 
The computation of the C machining passes takes 
into account both form accuracy (piecewise change 
of the cutting depth jΔ  on grey level gradient basis) 
and material characteristics (type and hardness of 
material to be removed impose upper limits on jΔ ). 

The result is that each roughing path ip  should be 
realized at constant cutting depth jΔ , feedrate 

F=jw  and spindle speed S=jn  to protect the tool 
and the machine’s kinematical chain. 
 
The ACO approach proposed maintains jΔ  constant 
at roughing path level, but varies in real time nw,   
when the tool moves along trajectory ip  – computed 
from image points of same grey level – in order to 
optimize a cost function. 
 
The productivity of cutting is taken as cost function, 
being expressed as the ratio I  between the mass of 
material removed in a time equal to the tool life, and 
the machining cost (Milner, 1974): 
 

TCT)t(CtPCkC
TBK

ertsssss ⋅⋅+++⋅⋅⋅+
⋅ρ⋅Δ⋅⋅⋅

=
cP

wI   (1) 

 

where w [mm/min]: feedrate, B [mm]: cutting width, 
Δ [mm]: cutting depth, ρ [t/m3]: material density, 

sC [$]: tool cost, tC [$/min]: worker’s wage rate, 

eC [$/KWh]: energy cost, sP [KW]:power consumed 
during tool change, cP [KW]: power consumed when 
cutting, st [min]: time for tool change, rt [min]: time 
for tool regrinding, T [min]:tool life, skK, :constants 
 
The allowable working domain is defined as the area 
in the control space ),( nw bounded by the constraints 
corresponding to limit values taken by six parameters 
completely characterizing the machining process:  



 

     

(1) Maximum torsion torque at the main spindle: 

                     maxt,M≤tM , or t
1 K≤⋅ −nw            (2) 

(2)  Maximum deflection torque at the main spindle: 

                     maxd,M≤dM , or d
1 K≤⋅ −nw          (3) 

(3) Pitch feed pf: 

      maxmin pfpf ≤≤ pf , or fM
1

fm KK ≤⋅≤ −nw   (4) 

(4) Kinematics of the feed drive: 
                          maxmin ww ≤≤ w                          (5) 

(5) Protection of main spindle and tool: 
                            maxmin nn ≤≤ n                           (6) 

(6) Main drive power limitation: 

                    maxP≤P , or p
1 K≤⋅ − ypyp nw            (7) 

Considering all six constraints, the allowable cutting 
domain appears as the interior of the ),( nw area with 
bold frontier represented in Fig. x. The domain varies 
in time, as PpfMM dt  and ,,, are subject to changes 
due both to variations in material hardness or local 
non homogeneity and to periodic updates of the nw,  
controls.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Allowable machining domain.  
 
By substituting in (1) the expression of the tool life T  
(T depends nonlinearly on w and n), maximizing the 
cost function I leads to minimizing IJ /1= : 
 

1yp11ypq)/m1(1q/m c.ba),( −−−−− ⋅+⋅+⋅⋅= wnwnwnwJ  

where yp m,q,c,b,a,  are constants, the last three 
being given by Taylor’s tool life formula (Shaw, 
1986). The isocost curves of the function ),( nwJ are 
given in Fig. 6. 
 
The optimization strategy is based on the localization 
of the minimum point of the cost function ),( nwJ in 
the convex allowable domain. The inequality 
constrained problem is solved using directional 
derivatives (Braswell, 1972). The problem is first 
converted to an equality constrained optimization 
problem with the usual assumptions concerning the 
differentiability of the objective function ),( nwJ and 
of the constraints (2) – (7). 

Let X  be an open set in NR  and { } pigf i ,...,1,, =  
numerical real valued continuous and differentiable 
functions defined on X . The problem of interest is to 
find a point 0x  that locally minimizes )(xf , where 

1Xx ∈ : 

{ }
⎪⎩

⎪
⎨
⎧ =≤∈=

∈ 1Xx

1

)(min or 
,...,2,1,0)(,

 :A Problem xf
pixgXxxX i

 

A point 10 Xx ∈  locally minimizes Problem A if 
there is a vector ε such that  

ε<∈≥− 010 x-x and  allfor   0)()( Xxxfxf  

Hence if an approximation of f in the neighbourhood 
of 0x can be found for all 1Xx ∈ and ε<− 0xx , 
then Problem A can be treated as an unconstrained 
one, using directional derivatives. 
 
Problem A is converted to an equality constrained 
optimization problem by adding slack variables: 

⎪⎩

⎪
⎨
⎧

==+ +

∈

pixx g

xf

ii ,...,1,0)(ith together w

)(min 
 :B Problem

2
N

Xx

Problem B is an equality constrained optimization 
problem of p+N  variables and p constraints, and 
can be solved using directional derivatives. Feasible 
direction vectors are defined as vectors tangent to the 
hyper planes resulting from the first approximation 
of the constraints. The feasible direction vectors 
h are determined from equations (8): 

                            1   0 TT == hhGh                       (8) 
where h is a 1)N( ×+ p vector and G is a pp ×+ )N(  
matrix defined as 
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with pixgx ii ,...,1),( 0
2
N =−=+  

 
The system (8) determines N linear independent 
feasible direction vectors provided the implicit 
function theorem holds in an extreme point 0x . From 
all solutions only N are independent; two cases are 
analysed: (1) N<p ( 2N = as [ ]T, nwx = ); (2) N≥p . 
 
Let ),( nwJ  be the cost function for the machining 
process with { }0,0),( ≥≥=∈= nwxXnwx and one 
single constraint from (2), (3) or (4), having the form 
 
          constant,0),( 11 =≤−= CnwCnwg            (9) 

w 

nmax 

nmin 

n sd 

k decreases 
sd max 

P 



 

     

Then, Problem A is: find point ),( 000 nwx = such 
that 0),(,0,0),,(min )(

),(
0 ≤≥≥= nwgnwnwJxJ

nw
. 

By adding a slack variable z , 0),( ≤nwg of Problem 

A is converted to 0),()( 2* =+= znwgxg  of a 
Problem of type B, where ),,( znwx =  and 

[ ]z21-C1=G . 
 
Clearly, the implicit function theorem holds for w . 
The sub matrices 2,1,)( =iiG  of G  that generate the 
feasible direction vectors 1h and 2h have the form 

[ ]1-C1
)1( =G , [ ]z2C1

)2( =G , and the vectors 
of feasible directions are: 
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The necessary condition for a point 0x  to be a local 
minimum of Problem B when 2)N,1( N ==< pp  
imposes that the first order directional derivative of 
J  vanishes, which gives: 

0),,(1),,( 0001
1

000h1 =∇⋅⋅= znwJznwJD h
h

 

0),,(1),,( 0002
2

000h2 =∇⋅⋅= znwJznwJD h
h

 

From these equations, the following stationary points 
),,( 0000 znwx =  are obtained: 

     
m

1-q
10 m)a-(1

mcC ⎥
⎦

⎤
⎢
⎣

⎡
⋅=w  , 

m
q
10 m)a-(1

mcC ⎥
⎦

⎤
⎢
⎣

⎡
⋅=n ,         

                                 00 =z                                   (10) 

To check the type of stationary points (10), one must 
further investigate, by means of 2nd order directional 
derivatives, the second order conditions. It was 
demonstrated that the matrix D of the quadratic form 

)( 0
2
h xJD  of 2nd order directional derivative in (11): 

                 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⋅⋅
+=

00

01
m)-m(1

c
C1
1

2
0

2
1 wD           (11) 

is positive semi definite, which requires a set of 
stronger condition. These new conditions are derived 
from the corrected 2nd order directional derivatives. 
For Problem B, the matrix [ ] 2,1;2,1,** === kiDikD  

with )(T* xJDD hkiik ∇= h  is positive definite, which 
indicates that the stationary point (10) computed 
from necessary conditions is a local minimum. 
 
The computing results are also confirmed by the 
form of the isocost curves of the function ),( nwJ . 
The optimum point will be placed on the boundary of 
the allowable operating domain, at the intersection of 
the constraint 0C1 =−⋅ nw  with the computed curve 

                         
m

q1q

m)a-(1
mc

⎥
⎦

⎤
⎢
⎣

⎡
=⋅ −nw ,              (12) 

as represented in Fig. 7. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 7. Locating the optimum point at the intersection 

of a “mechanical load” constraint 0C =−⋅ nw  
(torsion, deflection or pitch feed) with one of the 
type: electric power, feedrate or computed curve. 

 
For case 2 N)( ≥p , all six constraints (2) − (7) must 
be considered. Thus, one of the main drive power or 
maximum feedrate constraints may replace the 
computed curve above defined, for intersection with 
the maximum mechanical load constraint (one of 
torsion, deflection or pitch load curves 0C =−⋅ nw , 
depending on their current position during cutting). 
 
 

4. EMBEDDED OPTIMAL CONTOURING  
 
The optimization strategy for the milling process is 
based on two types of control actions: 
1. Driving the working point ),( nwx =  towards the 

stationary one 0x  and maintaining it as close as 
possible to it ( 0x  moves due to load disturbances 
i.e. to variations of  material hardness or depth of 
material to be removed ). 

2. Bringing back the current working point into the 
allowable domain bordered by constraints (2)−(7) 
and the computed curve (12), whenever these 
seven constraints are violated. 

Table 1 Constraint grouping in response to violation 
of the allowable working domain boundaries 

 
Constraint class  

 
Components Controls actions 

at frontier 
violation 

1R : “max. chip 
         load” type 

(2), (3) and 
(4) right 

www Δ−←  
nnn Δ+←  

2R : “max.power” 
         type 

(7), (12) and 
(5) right 

www Δ−←  
nnn Δ−←  

3R : “unloaded”   
         type 

(4) left www Δ+←  
nnn Δ−←  

4R : “speed”  
         type 

(6) ct=w  and 
nnn Δ+←  

or nnn Δ−←  
5R : “min. feed”  

         type 
(5) left www Δ+←  

ct=n  

wq n1-q = Cv 

w 

nmax 

nmin 

n sd min P max 

n0 



 

     

The seven constraints are grouped in Table 1 in five 
classes iR  for corrective actions at frontier violation. 
 
If more than one constraint is violated, the algebraic 
sum of the changes in w and n  is taken to maintain 
the total change of the controls at the value of one 
increment wΔ or nΔ . If the working point is inside 
the allowable area, the control strategy increases the 
feedrate: www Δ+← , ct=n ., which optimizes the 
throughput cost function and reduces simultaneously 
the cutting time.  
 
The nonlinear optimization algorithm with multiple 
inequality-type constraints is implemented in discrete 
version at sample period time sT within each tool 
path and uses four variables WINC, WDEC, NINC, 
and NDEC (increase/decrease nw, ) to periodically 
update the references nw,  of the control signals – 
feedrate and spindle speed starting from their initial 
values SF , specified for each CNC-program phrase.  
 
The interlaced numeric-adaptive (CNC-ACO) cutting 
control for one tool path is realized in the sequence: 
1. Set up new cutting depth for next tool path ip . 
2. Start tool path ip ; set up SnFw == , as initial 

control references from g-code. 
3. Reset WINC, WDEC, NINC, and NDEC 
4. Loop: 

• Continuously measure machine & process 
signals from internal sensors ( nw, ) and 
external ones: mechanical – )(or  td MM  and 
electrical – U, I, ϕcos over kTs, time intervals 
( kTs, corresponds to the variable time interval 

kn/)6.(16  milliseconds during which one 
complete rotation of the cutting tool (mill) 
occurs, where [rot/sec] kn  is the updated 
spindle speed during the k th sampling period 
within the current tool path). 

• Hold { } kdkd TMtM ,smax)( = and the values 

)(),(),(),( kkkk tIItUUtnntww ==== with 

kk Tt ,s∈ the time moment when the maximum 
value of dM  was registered. 

• Compute Ppf , and the nw,  dependency (12) 
• Check the violation of constraints (2)-(6) and 

modify WINC, WDEC, NINC, and NDEC 
according to the corrective actions in Table 1. 

• Change control references nw,  as follows: 

⎩
⎨
⎧

=Δ+
≠Δ⋅+

=+ WDEC  WINC,
WDEC WINC, WDEC)-WINC(

1 ww
ww

w
k

k
k

nnn kk Δ⋅+=+ NDEC)-NINC(1 ,    

5. … Until tool path ip completely generated. 

The embedded CNC-ACO milling control updates g-
code data F,S by sensor data fusion and nonlinear 
constrained optimization. From the resource point of 
view, external sensors are added to measure the 
mechanical and electric load of the machine, and a 

processor-based hardware module computes 
PpfnwM t ,,,max,

βα and updates the nw,  
optimization controls from initial CNC values NF , .  
n  is directly fed to the main spindle motor drive, and 
w is decomposed by the CNC trajectory generator 
into the interpolated Cartesian components yx ww , .     
 
 
5. CONCLUSIONS. EXPERIMENTAL RESULTS 

 
Experiments have been carried out in an information 
processing chain starting with the creation of a depth 
map image of 3D complex model surface (a F1 car 
body) using a FARO laser scanner – short range 
finder device, then generating iso-level tool paths 
with equal cutting depth as closed contours in the 
binarized negative depth map image (Fig. 8), and 
finally creating the finishing tool paths as iso-
parametric XY trajectories (Fig. 9).  
 

 
 
Fig. 8. Roughing stage with iso-level toolpaths. 
 

 
Fig. 9. Finishing stage using iso parametric tool paths 

in the XY plane. 
 
The g-code was executed on an EMCO vertical mill, 
with torsion torque measurement and ACO control, 
increasing by 21% throughput relative to fixed F,S.   
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