
AN IMPLEMENTATION OF HIGH AVAILABILITY IN

NETWORKED ROBOTIC SYSTEMS

Florin Daniel Anton, Theodor Borangiu, Silvia Anton

 University Politehnica of Bucharest, Dept. of Automation and Applied Informatics
313, Spl. Independentei sector 6, RO-060032, Bucharest, E-mail: anton@cimr.pub.ro

Keywords: Networked robotics, high availability, fault tolerant systems, resource monitoring, resource control

Abstract: In today’s complex enterprise environments, providing continuous service for applications is a key

component of a successful robotized implementing of manufacturing. High availability (HA) is one of the

components contributing to continuous service provision for applications, by masking or eliminating both

planned and unplanned systems and application downtime. This is achieved through the elimination of

hardware and software single points of failure (SPOF). A high availability solution will ensure that the

failure of any component of the solution - either hardware, software or system management, will not cause

the application and its data to become permanently unavailable. High availability solutions should eliminate

single points of failure through appropriate design, planning, hardware selection, software configuring,

application control, carefully environment control and change management discipline. In short, one can

define high availability as the process of ensuring an application is available for use by duplicating and/or

sharing hardware resources managed by a specialized software component. A high availability solution in

robotized manufacturing provides automated failure detection, diagnosis, application recovery, and node

(robot controller) re integration. The paper discusses the implementing of a high availability solution in a

robotized manufacturing line.

1 HIGH AVAILABILITY VERSUS

FAULT TOLERANCE

Based on the response time and response action to

system detected failures, clusters and systems can be

generally classified as:

• Fault-tolerant

• High availability

1.1 Fault-tolerant Systems

The systems provided with fault tolerance are

designed to operate virtually without interruption,

regardless of the failure that may occur (except

perhaps for a complete site going down due to a

natural disaster). In such systems all components are

at least duplicated for both software and hardware.

This means that all components, CPUs, memory,

Ethernet cards, serial lines and disks have a special

design and provide continuous service, even if one

sub-component fails. Only special software solutions

will run on fault tolerant hardware.

Such systems are very expensive and extremely

specialized. Implementing a fault tolerant solution

requires a lot of effort and a high degree of

customization for all system components.

For environments where no downtime is

acceptable (life critical systems), fault-tolerant

equipment and solutions are required.

1.2 High Availability Systems

The systems configured for high availability are a

combination of hardware and software components

configured to work together to ensure automated

recovery in case of failure with a minimal acceptable

downtime.

In such industrial systems, the software involved

detects problems in the robotized environment

(production line, flexible manufacturing cell), and

manages application survivability by restarting it on

the same or on another available robot controller.

Thus, it is very important to eliminate all single

points of failure in the manufacturing environment.

For example, if a robot controller has only one

network interface (connection), a second network

interface (connection) should be provided in the

same node to take over in case the primary interface

providing the service fails.

Another important issue is to protect the data by

mirroring and placing it on shared disk areas

accessible from any machine in the cluster, directly

or using the local area network.

2 HIGH AVAILABILITY TERMS

AND CONCEPTS

For the purpose of designing and implementing a

high-availability solution for networked robotic

stations integrated in a manufacturing environment,

the following terminology and concepts are

introduced:

RMC: The Resource Monitoring and Control

(RMC) is a function giving one the ability to

monitor the state of system resources and respond

when predefined thresholds are crossed, so that

many routine tasks can be automatically performed.

Cluster: Loosely-coupled collection of

independent systems (nodes – in this case robot

controllers) organized into a network for the purpose

of sharing resources and communicating with each

other. A cluster defines relationships among

cooperating systems, where peer cluster nodes

provide the services offered by a cluster node should

that node be unable to do so.

There are two types of high availability clusters:

• Peer domain

• Managed domain

The general difference between these types of

clusters is the relationship between the nodes.

Figure 1: Peer domain cluster topology.

In a peer domain (Figure 1), all nodes are

considered equal and any node can monitor and

control (or be monitored and controlled) by any

other node (Harris et. al., 2004).

In a management domain (Figure 2), a

management node is aware of all nodes it is

managing and all managed nodes are aware of their

management server, but the nodes themselves know

nothing about each other.

Figure 2: Managed domain cluster topology.

Node: A robot controller that is defined as part

of a cluster. Each node has a collection of resources

(disks, file systems, IP addresses, and applications)

that can be transferred to another node in the cluster

in case the node or a component fails.

Clients: A client is a system that can access the

application running on the cluster nodes over a local

area network. Clients run a client application that

connects to the server (node) where the application

runs.

Resources: Logical components or entities that

are being made highly available (for example, file

systems, raw devices, applications, etc.) by being

moved from one node to another. All the resources

that together form a highly available application or

service are grouped in one resource group (RG).

Group Leader: The node with the highest IP as

defined in one of the cluster networks (the first

communication network available), that acts as the

central repository for all topology and group data

coming from the applications which monitor the

state of the cluster.

SPOF: A single point of failure (SPOF) is any

individual component integrated in a cluster which,

in case of failure, renders the application unavailable

for end users. Good design will remove single points

of failure in the cluster - nodes, storage, networks.

The implementation described here manages such

single points of failure, as well as the resources

required by the application.

The most important unit of a high availability

cluster is the Resource Monitoring and Control

(RMC) function, which monitors resources (selected

by the user in concordance with the application) and

performs actions in response to a defined condition.

Management

server

RMC

Cluster Node 1

RMC

Cluster Node 2

RMC

Cluster Node 3

RMC

Cluster Node 2

RMC

Cluster Node 1

RMC

Cluster Node 4

RMC

Cluster Node 3

RMC

Figure 3: The structure of the RMC subsystem.

3 RMC ARCHITECTURE AND

COMPONENTS DESIGN

The design of RMC architecture is presented for a

multiple-resource production control system. The set

of resources is represented by the command, control,

communication, and operational components of

networked robot controllers and robot terminals

integrated in the manufacturing cell.

The RMC subsystem to be defined is a generic

cluster component that provides a scalable and

reliable backbone to its clients with an interface to

resources.

The RMC has no knowledge of resource

implementation, characteristics or features. The

RMC subsystem therefore delegates to resource

managers the actual execution of the actions the

clients ask to perform (see Figure 3).

The RMC subsystem and RMC clients need not

be in the same node; RMC provides a distributed

service to its clients. The RMC clients can connect

to the RMC process either locally or remotely using

the RMC API i.e. Resource Monitoring and Control

Application user Interface (Matsubara et al., 2002).

Similarly, the RMC subsystem interacting with

Resource Managers need not be in the same node. If

they are on different nodes, the RMC subsystem will

interact with local RMC subsystems located on the

same node as the resource managers; then the local

RMC process will forward the requests. Each

resource manager is instantiated as one process. To

avoid the multiplication of processes, a resource

manager can handle several resource classes.

The commands of the Command Line Interface

are V+ programs (V+ is the robot programming

environment); the end-user can check and use them

as samples for writing his own commands.

A RMC command line client can access all the

resources within a cluster locally (A) and remotely

(B) located (Figure 4). The RMC command line

interface is comprised of more than 50 commands

(V+ programs): some components, such as the Audit

resource manager, have only two commands, while

others, such as Event Response resource manager,

have 15 commands.

Figure 4: The relationship between RMC Clients (CLI) and RMC subsystems.

Node 1 Node 2

Resource and Resourse classes

RMC client

(CLI)

RMC client

(CLI)

RMC subsystem

Network

A B

RMC subsystem

RMC Process
RMC Command:

lsrsrc, mkrsrc ,…

RMC API

(local or remote)

RMgr Api

SDK V+

Audit

Logging

RMgr Api

SDK V+

Filesystem

Local FS

NFS

RMgr Api

SDK V+

EventResponse

Condition

EventResponse

Association

RMgr Api

SDK V+

Host

Host (Controller)

Program

Ethernet Device

RS232 Device

Resource

Managers

Configuration database

Each resource manager is the interface between the

RMC subsystem and a specific aspect of the Adept

Windows operating system instance it controls. All

resource managers have the same architecture and

interact with the other RMC components. However,

due to their specific nature, they have different usage

for the end user. The resource managers are

categorized into four groups:

1. Logging and debugging (Audit resource manager)

The Audit Log resource manager is used by other

RMC components to log information about their

actions, errors, and so on.

1. Configuration (configuration resource manager).

The configuration resource manager is used by

the system administrator to configure the system

in a Peer Domain cluster. It is not used when

RMC is configured in Standalone or Management

Domain nodes.

2. Reacting to events (Event Response resource

manager). The Event Response resource manager

is the only resource manager that is directly used

in normal operation conditions.

4. Data monitoring (Host resource manager, File

system resource manager). This group contains

the file system resource manager and the Host

resource manager. They can be seen by the end

user as the containers of the objects and variables

to monitor.

The Event Response resource manager (ERRM)

plays the most important role to monitor systems

using RMC and provides the system administrator

with the ability to define a set of conditions to

monitor in the various nodes of the cluster, and to

define actions to take in response to these events

(Lascu, 2005). The conditions are applied to

dynamic properties of any resources of any resource

manager in the cluster.

The Event Response resource manager provides

a simple automation mechanism for implementing

event driven actions. Basically, one can do the

following actions:

• Define a condition composed of a resource

property to be monitored and an expression that

is evaluated periodically.

• Define a response that is composed of zero or

several actions that consist of a command to be

run and controls, such as to when and how the

command is to be run.

• Associate one or more responses with a

condition and activate the association.

ERRM evaluates the defined conditions which

are logical expressions based on the status of

resources attributes; if the conditions are true a

response is executed.

Figure 5: Conditions, responses and actions.

Conditions and responses can exist without being

used and with nothing related to each other. Actions

are part of responses and only defined relative to

them. Although it is possible that multiple responses

have an action using the same name, these actions

do not refer to the same object.

To start observing the monitored resource, a

condition must be associated with at least one

response. You can associate a condition with

multiple responses.

Figure 5 illustrates the relationship between the

conditions, the responses, and the actions. In this

scheme, there are three associations (A, B, and C).

The association has no name. The labels A, B,

and C are for reference purposes. To refer to the

specific association, you have to specify the

condition name and the response name that make the

association. For example, you have to specify the

condition 1 and the response 1 to refer to the

association A. Also, it must be clear that the same

action name (in this example, action a) can be used

in multiple responses, but these actions are different

objects.

4 SOLUTION IMPLEMENTING

FOR NETWORKED ROBOTS

In order to implement the solution on a network

of robot controllers, first a shared storage is needed,

which must be reached by any controller from the

cluster.

The file system from the storage is limited to

NFS (network file system) by the operating system

of the robot controllers (Adept Windows). Five

Adept robot manipulators were considered, each one

having its own multitasking controller.

Association

Condition 1 Response 1 Action a

Action b

Action a

Action n

Condition 2 Response 2

Response M Condition N

A

B

C

Figure 6: Implementing the high availability solution for the networked robotic system.

For the proposed architecture, there is no option

to use a directly connected shared storage, because

Adept robot controllers do not support a Fiber

Channel Host Bus Adapter (HBA). Also the storage

must be high available, because it is a single point of

failure for the Fabrication Cluster (FC).

Due to these constraints, the solution was to use

a High Availability cluster to provide the shared

storage option (NFS Cluster), and another cluster

composed by Adept Controllers which will use the

NFS service provided by the NFS Cluster (Figure 6).

The NFS cluster is composed by two identical

IBM xSeries 345 servers (2 processors at 2.4 GHz,

1GB RAM, and 75GB Disk space, two RSA 232

lines, two Network adapters, and two Fiber Channel

HBA), and a DS4100 storage. The storage contains a

volume named Quorum which is used by the NFS

cluster for communication between nodes, and a

NFS volume which is exported by the NFS service

which runs in the NFS cluster. The servers have

each interface (network, serial, and HBA) duplicated

to assure redundancy (Anton et al., 2006; Borangiu

et al., 2006).

In order to detect the malfunctions of the NFS

cluster, the servers send and receive status packets to

ensure that the communication is established.

There are three communication routes: the first

route is the Ethernet network, the second is the

Quorum volume and the last communication route is

the serial line. If the NFS cluster detects a

malfunction of one of the nodes and if this node was

the node which served the NFS service the cluster is

reconfiguring as follows:

1. The server which is still running writes in the

Quorum volume which is taking the functions of

the NFS server, then

Quorum

Shared storage

NFS

Network Switch

Network Switch

Fiber Channel HBA

Network interface

Network interface

NFS Cluster

Node 2

Fiber Channel HBA

Network interface

Network interface

NFS Cluster

Node 1

Network Switch

Fiber Channel HBA Fiber Channel HBA SAN Switch

RSA 232

RSA 232 RSA 232

RSA 232

SAN Switch

Network interface

Fabrication Cluster

Robot Controller 1

RSA 232

RSA 232

Network interface

Fabrication Cluster

Robot Controller 2

RSA 232

RSA 232

Network interface

Fabrication Cluster

Robot Controller n

RSA 232

RSA 232

MANUFACTURING STRUCTURE (Cell, Line, …)

2. Mounts the NFS volume, then

3. Takes the IP of the other server and

4. Starts the NFS service.

 In this mode the Fabrication Cluster is not

aware about the problems from the NFS cluster,

because the NFS file system is further available.

The Fabrication Cluster can be composed by at

least two robot controllers (nodes) – group leader

and a common node. The nodes have resources like:

robot manipulators (with attributes like: collision

detection, current robot position, etc...), serial lines,

Ethernet adapter, variables, programs, NFS file

system. The NFS file system is used to store

programs, log files and status files. The programs

are stored on NFS to make them available to all

controllers, the log files are used to discover the

causes of failure and the status files are used to

know the last state of a controller.

In the event of a node failure, the production

flow is interrupted. In this case, if there is a

connection between the affected node and the group

leader, the leader will be informed and the GL takes

the necessary actions to remove the node from the

cluster. The GL also reconfigures the cluster so the

fabrication process will continue. For example if one

node cluster fails in a three-node cluster, the

operations this node was doing will be reassigned to

one of the remaining nodes.

The communication paths in the multiple-robot

system are: the Ethernet network and the serial

network. The serial network is the last resort for

communication due to the low speed and also to the

fact that it uses a set of Adept controllers to reach

the destination. In this case the ring network will be

down if more than one node will fail.

5 CONCLUSIONS

The high availability solution presented in this

paper is worth to be considered in environments

where the production structure has the possibility to

reconfigure, and where the manufacturing must

assure a continuous production flow at batch level

(job shop flow).

There are also some drawbacks like the need of

an additional NFS cluster. The spatial layout and

configuring of robots must be done such that one

robot will be able to take the functions of another

robot in case of failure. If this involves common

workspaces, programming must be made with much

care using robot synchronizations and monitoring

continuously the current position of the manipulator.

The advantages of the proposed solution are that

the structure provides a high availability robotized

work structure with a insignificant downtime.

The solution is tested on a four-robot assembly

cell located in the Robotics and IA Laboratory of the

University Politehnica of Bucharest. The cell also

includes a CNC milling machine and one Automatic

Storage and Retrieval System, for raw material

feeding and finite products storage.

During the tests the robot network has detected a

number of errors (end-effector collision with parts,

communication errors, power failure, etc.) The GL

has evaluated the particular situation, the network

was reconfigured and the abandoned applications

were restarted in a time between 0.2 and 3 seconds.

The most unfavourable situation is when a robot

manipulator is down; in this case the down time is

greater because the application which was executed

on that controller must be transferred, reconfigured

and restarted on another controller. Also if the

controller still runs properly it will become group

leader to facilitate the job of the previous GL.

In some situations the solution could be

considered as a fault tolerant system due to the fact

that even if a robot controller failed, the production

continued in normal conditions.

REFERENCES

Anton F., D., Borangiu, Th., Tunaru, S., Dogar, A.,

and S. Gheorghiu, 2006. Remote Monitoring and

Control of a Robotized Fault Tolerant Workcell,

Proc. of the 12
th
 IFAC Sympos. on Information

Control Problems in Manufacturing INCOM'06,

Elsevier.

Borangiu, Th., Anton F., D., Tunaru, S., and A.

Dogar, 2006. A Holonic Fault Tolerant

Manufacturing Platform with Multiple Robots,

Proc. of 15
th
 Int. Workshop on Robotics in Alpe-

Adria-Danube Region RAAD 2006.

Lascu, O. et al, 2005. Implementing High

Availability Cluster Multi-Processing (HACMP)

Cookbook, IBM Int. Technical Support

Organization, 1
st
 Edition.

Harris, N., Armingaud, F., Belardi, M., Hunt, C.,

Lima, M., Malchisky Jr., W., Ruibal, J., R. and J.

Taylor, 2004. Linux Handbook: A guide to IBM

Linux Solutions and Resources, IBM Int.

Technical Support Organization, 2
nd
 Edition.

Matsubara, K., Blanchard, B., Nutt, P., Tokuyama,

M., and T. Niijima, 2002. A practical guide for

Resource Monitoring and Control (RMC), IBM

Int. Technical Support Organization, 1
st
 Edition.

