
Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

CONTINUOUS PATH FOLLOWING WITH
APPLICATIONS IN DIFFERENT ROBOTIC TASKS

Theodor Borangiu
Andrei Nick Ivanescu

Anamaria Dogar
Alexandru Dumitrache

Andrei Rosu

University Politehnica of Bucharest,
Dept. of Automation and Applied Informatics

Bucharest, Romania

Abstract: This paper presents a theoretical approach and an implemented software
program for a robot’s end effector’s path following. The reason for following a path may
be avoiding obstacles or, more likely, moving the end effector along the contour of the
part being processed in order to do various technological tasks (cutting, welding, painting,
etc.). The complex path can be obtained in three ways: 1) by drawing the path in a CAD
software package; 2) by using the robot’s camera to acquire an image, and extract the
path from it in real-time, without operator assistance; 3) by using a image acquired by
some other means, and extracting the path from this image offline, before the robot
program is executed. The implemented software is using algorithms for: contour
extraction from binary images, polyline simplification, tool path reordering and
optimization, drawing, scaling and fitting to paper. An application that uses the developed
program in the process of making printed circuits boards by drawing the cable lay-up
using a special marker, is presented in the final section of the paper.

Keywords: Robotics, Image Analysis, Education, Computer-Aided Design

1. INTRODUCTION

In some applications, the robot should not only reach
a fixed number of pre-learned positions, but also
should move along a complex path or trajectory. The
reason for following a path by the end effector could
be avoiding obstacles or, more likely, doing various
technological tasks along the contour of a processed
part.

Because a complex path has many points, it may be
difficult to learn it using the teach pendant or by
hard-coding each point manually in a robot program.
There are the following alternatives:

1. Drawing the path in a CAD software package;
2. Using the robot’s camera to acquire an image,

and extract the path from it in real-time, without
operator assistance;

3. Using an image acquired by some other means,
and offline extracting the path from this image,
before the robot program is executed.

In most cases, the first option may be preferred,
because the path can be drawn with precision, as a
CAD program lets the user specify the coordinates of
the path segments. Moreover, a path drawn in a CAD
environment is not constrained to lie in a fixed plane;
it can be any 3D trajectory.

The second option should be used when the path is
not precisely known at programming stage. From the
image acquired by a camera it is possible to extract
the contour of the objects and ask the robot to follow
that contour, or to follow the path at a specified
distance, so that a rounded-shape tool will move
tangent to the object. This approach may be of little
interest in industrial environments, because in such
applications, the path is well-known from the design,
but it will be a nice application for demonstrative and
educational purposes.

The third approach allows the user to tweak the
image offline until he/she gets the desired results. It

Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

should be used when the path is not available in
vectorial format, and the precision is not important.
The path is also limited to a 2D plane.

Suppose a robot should follow a path made from
basic elements: lines and arcs. It can be also
considered more complex curves like splines, or
math functions such as logarithms, exponentials,
trigonometric functions and others. Because any
continuous function can be linearized, i.e.
approximated by small lines within a given tolerance,
only straight lines were considered.

2. FOLLOWING A CONTINUOUS PATH
DRAWN IN A CAD PACKAGE

If the end points of the segments are known the
complex path following is resolved. It is discussed
further the possibilities of extracting coordinates
from a CAD drawing. There are several ways of
doing this:

- Supposing the CAD package allows user-

defined scripts or macros, we can write a script
that iterates through all elements in the drawing,
writing their coordinates to a text file, using a
simple format like the one in the previous
section. AutoCAD supports VBA (Visual Basic
for Applications) and AutoLISP.

- Most CAD programs can save their drawings in

DXF (Drawing Exchange Format). A DXF file
is an ASCII file, and its structure is documented,
so it is possible to write a parser that extracts the
coordinates from these files.

- There are a lot of CAM (Computer Aided

Manufacturing) software packages that create
motion instructions for numerically controlled
machines (CNCs). These programs output in
ISO CNC language, also known as RS274 or
G-Code. Because these programs usually output
a small subset of the language, it will not be
difficult to write a translator that converts G-
Code to robot motion commands, or even an
interpreter written in robot programming
language that can execute G-Code files. It would
also possible to write a post-processor plugin for
a CAM program. The post-processor will save
the tool path into a simple text file, which will
be read by the robot.

In a CAD drawing, a path can be drawn as a
polyline, which is a collection of simpler entities
(lines, arcs and maybe spline curves) and which has a
start point and an end point. The program that
extracts coordinates from the polyline must linearize
all the curves (arcs, splines).

3. FOLLOWING A PATH EXTRACTED FROM
AN OFFLINE PROCESSED IMAGE. THE

DRAWING ROBOT

Suppose having a binary image that should be drawn
on paper using the robot. This is a very good
educational application, and also a fun project, which
show the students what a robot manipulator is
capable of. The project will also allow analyzing the
robot’s accuracy and repeatability.

It is needed to extract the contours from the image
and to tell the robot to move along these contours.
For example, if the image of a gear is taken, the robot
should draw it like this:

Fig. 1. Original binary image

Fig. 2. Image to be drawn by the robot

There are algorithms used for:
- contour extraction from binary image
- polyline simplification
- toolpath reordering and optimization
- drawing scaling and fitting to paper.

3.1 Path optimization

In the contour following application, the order in
which the contours are followed by the robot does
not matter. It is optimal to reorder the contours so
that the robot’s motion between the paths is
minimized.

Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

This optimization problem is similar to the traveling
salesman problem, which is NP-Complete, i.e. its
solution cannot be found in polynomial time. For this
reason, a simple heuristic algorithm that finds a good
(but not optimal) solution is presented.

Every robot path can be considered as a polyline
made from straight line segments, and is stored in the
computer’s memory as an array of vertices (points).
Every polyline has starting point and an end point.
Polylines may be open or closed.

Any polyline that has different start and end points is
an open polyline. Open polylines with N vertices will
be stored as an array of N vertices, where the first
vertex in the array is the starting point, and the last
vertex is the end point.

A polyline that has the same start and end points is a
closed polyline. Closed polylines having N vertices
will be stored as an array of N+1 vertices, with the
first and the last vertices being the same. The start
and the end point of a closed polyline are called the
polyline’s origin.

In order to minimize the robot motion between these
polylines, the following actions can be performed:
- changing the order in which polylines are

executed;
- reversing an open polyline, i.e. robot will start

following it from its end point, backwards to its
start point;

- changing the origin of a closed polyline;

Changing the direction in which the path is followed
have no influence on the extra distance that the robot
travels between polylines.

The following notations were used:
• P = { p1, p2 … pN }: a polyline represented by

an ordered set of points (i.e. an array with N
elements)

• reverse(P) = {pN, pN-1 … p1 }: a reversed
polyline

• changeorigin(P, k) = { pk , pk+1 ... pN-1, p1, p2 ...
pk }: a closed polyline with its origin changed to
the vertex pk . Note that pk is duplicated, in order
to show that the polyline is closed. Also,
because pN and p1 are the same, only one of
them is retained.

• Q = {P1 , P2 ... PM }: an array of polylines. The
robot will follow P1, then P2, and the last
polyline followed will be PM.

We also used the Euclidean distance between two
points.
The nearest neighbor algorithm:

Input: Q = {P1 , P2 ... PM

 }: an array of M
polylines

Output: R = { P1o , P2o ... PMo
 }: an array of M

polylines. The M polylines are built from the ones in
Q; open polylines may be reversed, and closed
polylines may have their origin changed. The order
of polylines in Q and R may not be the same.

1. Choose a starting polyline (i.e. the leftmost): P1o

; add it in R and remove it from Q;
2. R = { P1o }, Q = Q – { P1o };
3. While Q is not empty:

1. Let pe be the end point for the current
polyline.

2. For each open polyline Pk = { p1
k, p2

 k
 … p-

Nk
 k }

1. Compute dk
S = d(pe, p1

k) - distance
from pe to the start point of Pk
2. Compute dk

E = d(pe, pNk
k) - distance

from pe to the end point of Pk
3. Compute dk = min(dk

S , dk
E)

3. For each closed polyline Pk = { p1
k, p2

 k
 …

pNk
 k }

1. Compute dk
i = d(pe, pi

k), i = 1:Nk -
distance from pe to each point of Pk

2. Compute dk = i
min

dk
i and let imin =

arg i
min

dk
i

4. Find the closest polyline Pj with respect to
pe – the one that has the smallest dj.

5. Remove Pj from Q
Q = Q – { Pj }

6. Add Pj to the solution and update the end
point pe:

1. If Pj is open:
 1. If dk

E < dk
S, Pj = reverse(Pj)

2. Else (Pj is closed):
 1. Pj = changeorigin(Pj , imin)
3. R = R ∪ { Pj }
4. pe = pNj

j

If the array insertions and deletions are made in O(1),
the algorithm has a complexity of O(NM2) – where
M is the number of polylines, and assuming every
polyline has N vertices. For more speed, it’s possible
to skip changing origin for closed polylines; in this
case, the complexity becomes O(M2 + MN).

3.2 Scaling and fitting the drawing to paper

In order to determine the size of the drawing
executed by the robot, a millimeter to pixel ratio is
needed to be determined. All the drawing elements
were scaled using that ratio. In order that the drawing
to be centered on the page, scaling was done in the
following way:
Algorithm for scaling and centering the drawing on
page:
Inputs: r = millimeter to pixel ratio
 w, h: page size, in millimeters

Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

P = { pi }: the set of all 2D points from which our
drawing is made; pi = <xi, yi>, having coordinates
expressed in pixels
Outputs: Q = { qi }: the points from P scaled and
translated for centering the drawing on page.

1. Find the minimum bounding box for the

drawing:
xmin = i

min xi , ymin = i
min yi

, xmax = i
max xi , ymax = i

max yi
2. Translate the drawing so that the center of the

bounding box will be in origin

xc = 2
minmax xx +

; yc = 2
minmax yy +

pi = <xi – xc , yi – yc> for every i

3. Scale the drawing using the millimeter to pixel

ratio
p i = <xi * r , yi * r> for every i

4. Center the drawing on page:

qi = <xi + w/2 , yi + h/2> for every i

By choosing different ratios, drawings of different
sizes for the same object can be obtained. It would be
a good idea to let the program determine
automatically a ratio so that the drawing fits the
page. The user have to specify a margin in which
noting will be drawn. This is done by the following
algorithm:

Algorithm for computing the millimeter-to-pixel ratio
for fitting a drawing to a page
Inputs:
w, h: page size, in millimeters
m: desired margin, in millimeters
P = { pi }: the set of all 2D points from which
our drawing is made; pi = <xi, yi>, having coordinates
expressed in pixels
Output: r: the computed millimeter-to-pixel ratio

1. Find the minimum bounding box for the
drawing:

xmin = i
min xi , ymin = i

min yi ,

xmax = i
max xi , ymax = i

max yi
wd = xmax – xmin; hd = ymax – ymin

2. Compute the ratio

wp = w – 2m
hp = h – 2m

r = min(wp / wd, hp / hd)

3.3 User Interface

The above algorithms were implemented in a
program that lets the user open an image and
computes the robot path for drawing the image’s
contour. The user’s operation is described as follows:

1) The user opens the input file, which is a bitmap
image.

Fig. 3. Loading the image to be drawn

2) The contour extraction window: at this step, the
image contour is detected with Moore-Neighbor
algorithm.

Fig. 4. The contour extraction step

3) Polylines are filtered using the Douglas-Peucker
algorithm, using a tolerance set by user. Also,
polylines that have the total length less than a
specified value are removed.

Fig. 5. Filtering the polylines

Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

4) Polylines are optimized in order to minimze robot
path:

Fig. 6. Initial (unoptimized) polylines

Fig. 7. Optimized polylines

5) User enters paper size, and various settings for
executing the drawing.

Fig. 8. Setting paper size and various parameters for
robot motion

6) The program writes the file with the robot’s path.

7) User executes the V+ program that follows the
path.

4. MAKING PRINTED CIRCUITS BOARD

The technological process of making printed circuits
boards includes the chemical process of corrosion of
the copper with ferric chloride. Initially any circuit is
a textolite board with a thin copper folium. The
connecting paths between the electronic components
are printed on this board. This printing is done in
order to protect the copper.

The printing is done using a special marker. The
paint left by the marker will ensure the protector
layer necessary for the interruption of the chemical
reaction and preserving the paths. The marker is
mounted in the end effector of the robot, and moved
on a computed path.

After printing the board is eroded. The result of this
stage is a board only with the printed path. The
cleaning of the printing paint is done using isopropyl
alcohol.

The next stage consists in drilling the electronic
board in order to fix the electronic parts. This stage is
done with a milling CNC machine. The holes
coordinates are identified on an image in which they
are marked with + symbol. The last stage is the
mounting of electronic parts on the resulted PCB.

The image of the PCB is available in bitmap format.
Using the path following algorithm there has been
developed a new algorithm that generates the path
that the marker will follow. The algorithm considers
also the width of the marker and hatches the larger
area of the PCB.

In the next figure the image of a test circuit with a
resolution of 300 dpi is presented, the path
represented with white colour is generated for a 10
pixels (0.85 mm) marker.

Fig. 9. The test circuit and the marker path

The algorithm can hatch the larger area of the PCB,
when contour following is not enough for entire
covering. The hatching is done by eliminating the
contour covered in the precedent step of the

Proceedings of 16th Int. Workshop on Robotics in Alpe-Adria-Danube Region - RAAD 2007
 Ljubljana, June 7-9, 2007

algorithm and applying the same algorithm until the
area is covered.

The algorithm has been tested using the Adept Cobra
600 robot and the results are shown in the figures
below.

Fig. 10. The algorithm hatches the larger areas of the
PCB

Fig. 11. The robot drawing a cable lay-up

In the case of the PCB with the line thinner than the
existing marker a skeletonisation algorithm is used.
The vectorization program can decide in which case
is necessary to use one of the two implemented
algorithm.

The two images can be obtained using dedicated
designing programs like Orcad, Proteus.

CONCLUSIONS AND FUTURE WORK

This work has been done in the Robotics and AI
Laboratory of the Faculty of Automatic Control and
Computers. For the experiments, it was used a
SCARA robot, Adept Cobra 600 TT. Future work
includes using better algorithms for polyline
simplification and testing real-time contour following
procedures. A visual inspection procedure of the
drawn cable lay-up will be also developed.

REFERENCES

Borangiu, Th. (2004). Intelligent Image Processing
in Robotics and Manufacturing, Publishing
House of Romanian Academy, Bucharest

O’Gorman, L. (1996). Subpixel Precision of Straight-
Edge Shape for Registration and Measurements,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18, 11, 57-68

