
Heuristic Solution for Constrained 7-DOF Motion
Planning in 3D Scanning Application

Theodor Borangiua, Alexandru Dumitrachea, Anamaria Dogara

a Centre for Research and Training in Industrial Control
Robotics and Materials Engineering

University Politehnica of Bucharest, RO

Abstract

This article proposes a heuristic algorithm for near-optimal handling of the re-
dundancy in robot mechanisms, applied to a 3D scanning platform consisting on
a 6-DOF articulated robot arm which moves a laser sensor around an workpiece
placed on a rotary table. The proposed method handles both static constraints, like
avoiding joint limits, kinematic singularities or collisions, modelled using a con-
figuration map viewed as a grayscale image, and dynamic constraints like velocity
and acceleration. The algorithm is compared with Dijkstra algorithm, which gives
the optimal solution, but is very slow, and with two other heuristics which are very
fast, but give suboptimal solutions.

Key words: motion planning, inverse kinematics, 7-DOF manipulator,
3D laser scanning
PACS:45.40.Ln, 45.40.Bb

1. Introduction

This work is part of a project whose goal is to develop a 3D laser scanner sys-
tem by using a 6-DOF vertical articulated robot arm to move a triangulation-based
laser probe around the object of interest, which is placed ona rotary table. The ma-
nipulator has a spherical working envelope with a radius of 650 mm and the laser
probe is able to measure distances from 70 to 250 millimetreswith an accuracy of
30µm. An overview of the scanning system is illustrated in Fig. 1.The robotic

Email addresses:borangiu@cimr.pub.ro (Theodor Borangiu),
alex@cimr.pub.ro (Alexandru Dumitrache),dogar@cimr.pub.ro (Anamaria Dogar)

URL: www.cimr.pub.ro (Theodor Borangiu)

Preprint submitted to Control Engineering Practice November 21, 2010

arm will move around the workpiece being analyzed using computer-generated
adaptive scanning paths, which are computed in real-time while the scanning sys-
tem is discovering the features of the object. The resulting3D model will be used
for reproduction of the scanned parts on a 4-axis CNC milling machine.

Figure 1: Main components of the scanning system

Current solutions for 3D scanning use either straight line motions in Cartesian
space, or simple rotary motions of the device holding the scanned object and/or
the laser probe. Moreover, the 3D scanning software designed for coordinate
measuring machines (CMMs) is not optimal for robot arms due tosingularity
issues and nonlinear kinematics. The current paper presents a flexible planning
solution which uses kinematic redundancy to specify additional constraints, such
as collision and singularity avoidance, keeping the robot far from its joints limits,
while maintaining a smooth motion of the mechanism.

2

2. Problem description

The scanning trajectories are defined as motions in a reference frame attached
to the workpiece. Some examples of proposed scanning trajectory patterns are
given in Fig. 2a-d. The trajectories are discretized, i. e. described by a series of
closely spaced locations (which include position and orientation), and the path be-
tween these locations is approximated by linear interpolation in Cartesian space.
The position change between two discrete steps is executed as a straight line mo-
tion. For the orientation change, the rotation matrix between two discrete steps is
represented in axis-angle format, and the linear interpolation is performed on the
rotation angle, keeping the rotation axis fixed. The discretization is only used for
planning the motion of the redundant mechanism, and is usually different from the
time step used in the feedback loop of the robot and rotary table controllers, which
also perform the resampling computations required for following the planned mo-
tion.

The scanning trajectories are generated as sequences of motions, described by
positions and orientations of the laser probe with respect to the workpiece. Since
the robot arm has 6 degrees of freedom, this appears to be sufficient in order to
achieve any desired position and orientation. The reason for using the rotary table
is that the robotic arm alone is not able to look at the piece from the front side
and then from the back side, especially for large workpieces. For the trajectories
in Fig. 2 (a) and (b), it is clear that the workpiece has to be rotated on the table in
order to complete the motion. For the trajectories in Fig. 2(c) and (d), if the object
is small enough, it will be possible to perform the zig-zag path without rotating
the table, but for larger objects, an out-of-range condition for the robot arm will
occur, and that can be avoided by rotating the table.

A straightforward solution is to incorporate the rotary table motion in the scan-
ning trajectory. This solution may be good for simple scanning patterns like those
presented in Fig. 2, where the solution for the rotary table motion is obvious.
However, as one of the aims of this work is to develop automated adaptive scan-
ning procedures, by discovering the workpiece’s concave regions which are hard
to reach (Impoco et al. , 2005), the resulting trajectories will be more complex.
Also, the generation of adaptive scanning trajectories is not an easy task, so it was
decided to make the task of rotary table movement completelyautomated.

The aim of this paper is to present an algorithm that determines automatically a
suitable trajectory for the rotary table, when a scanning path around the workpiece
is known. Input data for this problem consists of the scanning paths, which are a
series of locations (positions and orientations), in the workpiece’s reference frame.

3

(a) (b) (c) (d)

Figure 2: Examples of scanning patterns: (a) spherical; (b)cylindrical; (c) zig-zag; (d) zig-
zag with tilted probe

The scanning system has to move continuously and synchronously the rotary table
and the robot arm, such as the laser probe reaches the programmed locations and
take measurements without stopping the system motion. Output data is a sequence
of joint values of the robotic arm and the angle of the rotary table, which give
the desired location of the laser probe with respect to the workpiece. In other
words, the problem presented here is the inverse kinematics(IK) for a 7-DOF
kinematic chain. In addition, the computed solution has to satisfy the following
requirements:

• minimize the accelerations and limit the speed of the rotarytable, since a
smooth motion is required for being able to hold the workpiece without
additional fixtures

• avoid collisions with any obstacles which may be within the manipulator’s
range, or between the manipulator and the rotary table;

• flexible reach of the robotic arm, while avoiding the proximity of singular
configurations which can result in very high joint speeds

3. Problem modelling

3.1. Kinematics model

From a kinematics point of view, the 6-DOF robot arm and the rotary table
are modelled using the Denavit-Hartenberg convention (Spong et al. , 2005), as
shown in Fig. 3 and Table 1. The rotary table may be consideredfixed and the
robotic arm rotating around the workpiece, hence the effectof the7th degree of
freedom is applied before the other 6 links in the kinematic chain. The position of
the rotary table relative to robot is modelled therefore as alink 0, or link R, where
θR is the rotary angle variable.

4

The location of the laser probe with respect to the workpieceis specified as
a homogeneous transformation matrix (HTM), which containsinformation about
the Cartesian position and the orientation. The orientationmay be specified in
yaw-pitch-roll angles or axis-angle formats, but it shouldbe converted to the HTM
format. The scanning trajectory is specified as a series of HTMs, each matrixT (k)

L

corresponding to a discrete time stepk.
The location of the laser probe with respect to the manipulator base isT (k)

M ,
which is the product between the DK solution for the 6-DOF arm, and the tool
transformTTL which specifies the location of the laser probe with respect to the
the robot arm flange, and is computed using a calibration procedure (Borangiu et
al. , 2009).

T
(k)
M = TDK

(

θ
(k)
1 . . . θ

(k)
6

)

· TTL (1)

Figure 3: Kinematics model of the scanning system

Link ai [mm] di[mm] αi [deg] θi [deg]
0/R -500 -200 0 θR

1 75 335 -90 θ1
2 270 0 0 θ2
3 -90 0 90 θ3
4 0 295 -90 θ4
5 0 0 90 θ5
6 0 80 0 θ6

Table 1: Denavit-Hartenberg parameters of the 7-DOF mechanism

5

The location of the rotary table with respect to the robot base isT (k)
R

(

θ
(k)
R

)

, which

is a translation indicating the position of the table with respect to manipulator,
followed rotation aroundOZ:

T
(k)
R

(

θ
(k)
R

)

= T (−a0, 0,−d0) · RZ

(

θ
(k)
R

)

(2)

The inverse kinematics (S. R. Buss , 2009) for the 6-DOF manipulator is solved
by its controller unit, and will be namedIK6:

θ
(k)
1...6 = IK6

(

T
(k)
DK

)

(3)

3.2. Problem decomposition
The inverse kinematics of this 7-DOF chain can be decomposedin two steps:

1. Choose a suitable angle for the rotary table;
2. Solve the inverse kinematics for the 6-DOF arm and the angle chosen at

step 1.

Supposing that at time stepk, the laser probe has to be placed in the workpiece
reference frame at the locationT (k)

L , and the angleθ(k)R was chosen, the position
of the laser probe with respect to robot base should be:

T
(k)
M

(

θ
(k)
R

)

= T
(k)
R

(

θ
(k)
R

)

· T
(k)
L (4)

SinceIK6 usually has a finite number of solutions, and when a robot configuration
(LEFTY / RIGHTY, ABOVE / BELOW or FLIP / NOFLIP) is selected, a unique
solution can be chosen, and the planning problem would be solved:

θ
(k)
1...6 = IK6

(

T
(k)
M

(

θ
(k)
R

)

· (TTL)
−1
)

(5)

Therefore, the 7-DOF planning problem is reduced to the planning of a single
joint value, the rotary table angleθ(k)R , for all time stepsk = 1, n.

3.3. The configuration map
The configuration space for this problem can be represented in its discrete

form as am× n image, or map, where:

• the line indexi corresponds to the rotary angleθR:

i =

{

1 =⇒ θR = −180 ◦

m+ 1 =⇒ θR = 180 ◦

6

• the column indexj corresponds to the discrete timek = 1, n;

Since the rotary table can rotate continuously, the configuration map is periodic
on the vertical axis.

The configuration map modelsstatic constraintssuch as:

• joint values obtaned byIK6 should be inside the allowed limits;

• current robot configuration should not be singular;

• the robot arm should not collide with nearby equipment.

The pixel value at location(i, j) in the map represents whether the static con-
straints are fulfilled or not, for the rotary table angleθR(i) at time stepj. For
binary constraints:

MB(i, j) =

{

1 (white): all constraints are fulfilled
0 (black): at least one constraint is not fulfilled

(6)

This image will be called thebinary configuration map(Fig. 4). The white (al-
lowed) regions on the map will be namedCfree , while the black (forbidden)
regions will be denoted asCobs.

Figure 4: An example of binary configuration map

The configuration map depends only on the scanning patternsT
(j)
L specified

as inputs for the algorithm, after being discretized intoj time steps.
Having defined the configuration map, the planning algorithmhas to find a

trajectory traversingCfree, from the starting rotary table angle, in the first column,
to any position in the last column. This trajectory will be the one for the rotary
table, and for each point, the corresponding robot positionis found withIK6.

7

3.4. The graylevel configuration map

As illustrated in S. M. LaValle et al. (2006), a shortest pathsolution through
the binary configuration space is likely to touch the boundaries ofCobs. When
this happens, the robot is either near limits of its joints orits working envelope, or
close to a singular point, or very close a physical obstacle,which is not desirable.

In order to obtain a planning algorithm that does not touch the boundaries of
Cobs, but maintains a sufficient distance, one has either to artificially enlargeCobs,
or modify the interpretation of the map values inCfree to indicate the proximity
of a forbidden region.

The values of the map inCobs remain zero, which means that these are forbid-
den states. The values inCfree will be in the (0, 1] interval, showing that any of
these states are allowed, but also indicating how desirableis the state. Therefore,
states having higher values are more desirable than states having values close to
0.

Therefore, one can construct functions which evaluate a static robot pose with
respect to a given criteria, with the following values:







f = 0 : constraint is not fulfilled
f = 1 : constraint is completely fulfilled

0 < f < 1 : constraint is partially fulfilled

Considering the joint limits of the robot for a given linkk, it is possible to use
a function which is equal to zero at the joint limits and reaches its maximum value
at the middle of the interval:

flim(θk) =

(

sin

(

θk − θmin
k

θmax
k − θmin

k

· π

))γj

, θmin
k ≤ θk ≤ θmax

k (7)

A function which evaluates the entire robot configuration, with respect to joint
limits criteria, can be constructed by multiplying the individual joint functions:

flim (θ1...6) =
6
∏

k=1

flim(θk) (8)

By adjusting the values of the exponentsγj, it is possible to control the shape of
the functions (Fig. 5 a).

For collision avoidance, the geometric model is required for every component
(robot links, sensor, rotary table). This model can be imported from CAD files or

8

approximated by primitive shapes. For each pair(i, j) of possibly colliding bod-
ies, it is required to ensure a minimal distanceAij, while the preferred value for
this distance isBij. The distance between two bodies is considered the minimum
distance between their surfaces,dmin(θ1...6, i, j), and the function for evaluating
the collision criteria for one pair of bodies is (Fig. 5 b):

fc (θ1...6, i, j) =















0, dmin ≤ Aij
(

sin

(

dmin(θ1...6, i, j)− Aij

Bij − Aij

·
π

2

))γc

, Aij < dmin < Bij

1, Bij ≤ dmin

(9)
For considering all possible pairs(i, j), the evaluation function is:

fC(θ1...6) =
∏

i,j

fc (θ1...6, i, j) (10)

Near kinematic singularities, maintaining a low speed at the end-effector may re-
quire very high velocities in robot joints (Adept , 2007), singular configurations,
and also their proximity, should be avoided. A possibility is to use themanipula-
bility indexproposed by (T. Yoshikawa , 1985) as the distance between thecurrent
robot position and the closest singular configuration:

ds(θ1...6) = ω(θ1...6) (11)

The criteria for avoiding proximity of singular configuration is similar to (9):

fs(θ1...6) =















0, ds ≤ dmin
s

(

sin

(

ds − dmin
s

dmax
s − dmin

s

·
π

2

))γs

, dmin
s ≤ ds ≤ dmax

s

1, ds ≤ dmax
s

(12)

0

0.5

1

θ min
j θ j θ max

j

γ j = 2
γ j = 1
γ j = 0.5
γ j = 0.2
γ j = 0.1

(a) For avoiding proximity of joint limits

0 A B
0

0.5

1

γ = 0.5
γ = 1
γ = 2
γ = 4

(b) For avoiding collisions and singularities

Figure 5: Functions for evaluating static robot positions

9

For evaluating a given robot configuration with respect to all the above mentioned
static criteria, one has to multiply the individual functions, obtaining:

fR(θ1...6) = flim(θ1...6) · fC(θ1...6) · fs(θ1...6) (13)

which also takes real values between 0 and 1.
Thegrayscale configuration mapwill be represented as a 2D grayscale image,

with pixel values representingfR from (13), like the example in Fig. 6 (a).

(a) Two-dimensional view (b) Cylindrical view

Figure 6: An example of grayscale configuration map

Since the angle is represented on the vertical axis, and the table can rotate
without restrictions, the map can also have a cylindrical representation, like in
Fig. 6 (b).

The criteria which avoids the proximity of joint limits has another desirable
property, illustrated in Fig. 7, which is ensuring a natural(or relaxed) joint con-
figuration. In Fig. 7 (a)...(c), the laser sensor has the sameposition relative to the
scanned part. The (c) configuration is the most desirable, and it maximizes (8).

(a) (b) (c)

Figure 7: Robot arm and laser looking at a workpiece from different positions:
(a) Robot is near a ”too close” condition (table rotated at−25 ◦)
(b) Robot is near a ”too far” condition (table rotated at−95 ◦)
(c) Robot is not close to its limits (table rotated at−60 ◦).

10

3.5. Performance criteria
This section defines a cost function for evaluating a path computed by a plan-

ning algorithm. This function models the criteria presented in Section 2, which
can be divided into:

• Static criteria, like joint limits, singular configurations or collision avoid-
ance, specified by the greylevel values in the configuration map;

• Dynamic criteria: the speed and acceleration of the rotary table.

In this application, there were no explicit speed and acceleration constraints
for the robot arm itself; excessive speeds of the robot joints can appear only in the
proximity of kinematic singularities, which are avoided using a static constraints;
therefore, speeds and accelerations in the robot arm are avoided indirectly with
(12).

Let n be the number of discrete time steps for a given planning problem. The
initial conditions are the rotary table angleθ(0)R and the rotary table angular veloc-
ity ω

(0)
R . The planner will compute the anglesθ(1)R throughθ(n)R , which are obtained

by integrating the angular velocitiesω(0)
R to ω

(n−1)
R or by performing a double in-

tegration of the angular accelerationsa
(0)
R to a

(n−1)
R .

During the discrete momentsk andk+1, which correspond to continuous time
momentstk andtk+1 = tk + ∆t, the table rotates using the constant acceleration
a
(k)
R . Therefore,

ω
(k+1)
R = ω

(k)
R + a

(k)
R ∆t (14)

θ
(k+1)
R = θ

(k)
R + ω

(k)
R ∆t+ a

(k)
R

(∆t)2

2
(15)

The penalty due to rotary table motion (high speeds or high accelerations) can be
expressed as:

Caω =
n−1
∑

i=0

(

ka

(

a
(i)
R

)2

+ kω

(

ω
(i)
R + a

(i)
R ∆t

)2
)

(16)

whereka andkω are scalar weights for the angular acceleration and speed ofthe
rotary table.

The cost due to partial fulfillment of static constraints modelled by the config-
uration map can be defined as:

Cadv =
n

∑

i=1

(

1− fR

(

θi, T
(i)
L

))

(17)

11

If the robot at stepi can position the laser probe at the positionT
(i−1)
L , but it

cannot reachT (i)
L by rotating the table in the time∆t while obeying the maximum

acceleration and speed, the scanning process has to wait until the rotary table
comes into an acceptable position, so that the robot is able to reachT (i)

L .
Therefore, a delay in the scanning process is introduced, and it will be named

d(i). The delay depends on the amount of the rotation needed, and the maximum
speed and acceleration limits. If the table rotation is small enough, no delay is
introduced from time stepsi − 1 to i, and therefore,d(i) = 0. By summing the
delays for every time step and weighting them with the scalarkd, the delay cost
for a given path is:

Cdelay = kd

n
∑

i=1

d(i) (18)

The total cost function of a given path will be:

Cpath

(

θ
(1...n)
R , ω

(0...n−1)
R , a

(0...n−1)
R , d(1...n)

)

= Caω + Cdelay + Cadv (19)

4. Algorithms

Any planning algorithm presented here will start from an initial condition vec-
tor of the rotating system, which contains the rotary table angleθ(0)R and the rotary
table angular velocityω(0)

R . The destination is not fixed, the planned path has only
to reach the last column in the configuration map, at any rotary angle and angular
velocity,θ(n)R andω(n)

R . After the map is traversed, the scanning trajectory is com-
pleted and the rotary table may either decelerate and stop, or prepare for another
scanning trajectory.

Related work in planning algorithms focus on two or more dimensions in the
configuration space (Latombe et al. , 1999), (M. Sharir , 2004). Successful so-
lutions include roadmap-based planners, which use a graph that represents the
connectivity of the free configuration space, and potentialfield methods (Y. K.
Hwang, N. Ahuja , 1992), which represent forbidden areas as repulsive forces
and goals as attractive forces, allowing the planning problem to be solved using
gradient-based optimization method. Recent approaces use genetic algorithms
(Kazem et al. , 2008), probabilistic methods and random sampling schemes (J.
Barraquand et al. , 1997).

The planning problem presented in this article is similar toa smooth path
finding problem for a point moving in a 2D space; however, the second dimension
represents the time, since the duration of the motion and thespeed profile for the

12

laser sensor with respect to the workpiece are known a priori; therefore, state-of-
art algorithms for 2D problems cannot be applied directly.

The planning problem has speed and acceleration constraints, and therefore it
can be considered nonholonomic (Tanner et al. , 2000). A possible solution is
to expand the configuration space with a third dimension representing the rota-
tional speed of the table; in this way, the problem can be solved optimally using a
Dijkstra-like algorithm (Cormen et al. , 2000).

4.1. Rotate when out of range

This algorithm, given in pseudocode as Algorithm 1, is the simplest strategy
for rotating the table. Whenever the trajectory hits an obstacle on the binary con-
figuration map, the algorithm finds the minimum amount of rotation that gets out
of the forbidden map area. However, this will introduce highdelays in the scan-
ning process, but this strategy can be used as a fall-back mechanism. This is
possible due to the nature of the current application, wherescanning (and robot
movement) can be paused, while only rotating the table untilthe system reaches
an allowed configuration.

Algorithm 1: Rotate when out of range

θ← θ
(0)
R

for j = 1 to n do

if fR

(

θ, T
(j)

L

)

then

for ϕ = 0 to 180 step ∆θ do

if fR

(

θ+ϕ, T
(j)

L

)

then

θ← θ+ϕ

break

if fR

(

θ−ϕ, T
(j)

L

)

then

θ← θ−ϕ

break

θ
(j)
R ← θ

Figure 8: Sample solution for Algorithm 1. The
planned path touches the edges of the obstacles.

In this and all subsequent examples, the time step used is∆t = 0.1 s , therefore
the test motion, which has 200 discrete steps, takes 20 seconds to complete, unless
otherwise stated.

4.2. Local maxima search

This algorithm attempts to use the graylevel configuration map as apotential
field, and at every time step, i. e. on every column on the map, steerthe table
towards a local maxima of the current column. The speed of steering, and also

13

the change in speed, are weighted according to the performance criteria specified
previously, in order to ensure a smooth motion.

This approach works better than the first method; however, itis sensitive to
local maximas in the graylevel map, which in many cases may lead to deadlock
situations.

(a) Local maxima guide path (b) Smoothed local maxima path

(c) Angular speed (smooth path)(deg/s) (d) Angular acceleration(deg/s2)

Figure 9: Results of local maxima search algorithm

The guide path cannot be followed exactly due to possible sharp corners (Fig. 9 a),
which require high instantaneous acceleration rates. A smoothed path (Fig. 9 b,c,d)
can be followed easier, but it still requires accelerationsmuch higher than needed.
Accelerations could be lowered by a stronger smoothing filter, but with the risk of
the smoothed path touching the forbidden areas on the map.

4.3. A Dijkstra-like algorithm

The Dijkstra algorithm finds the minimal cost path through a graph with pos-
itive weights (or costs) on its edges, from a given node to allthe other nodes that
can be reached from it Cormen et al. (2000). Given the discretemodelling of the
planning problem, it can be formulated in terms of graph theory.

In order to put constraints on the speeds and accelerations,a third dimension
has to be added to the configuration space: the angular velocity. The graph nodes
form a finite 3D matrix, as they map to a continuous 3D space, having on the first
dimension the rotary table angleθ , on the second dimension the continuous time
t , and on the third dimension, the angular velocityω. A discrete representation
(i, j, k) maps to an unique continuous configuration(θi, tj, ωk) . The reverse

14

transform, from continuous to discrete, assigns a single discrete node(i, j, k) to a
continuous interval:





θi −
∆θ
2

≤ θ < θi +
∆θ
2

tj −
∆t
2

≤ t < tj +
∆t
2

ωk −
∆ω
2

≤ ω < ωk +
∆ω
2



 ⇒





i

j

k



 (20)

The method for obtaining a Dijkstra-like algorithm for a continuous problem
is presented in S. M. LaValle et al. (2006).

(a) (b)

(c) (d)

Figure 10: Examples for Dijkstra algorithm:
(a) Path computed for a binary configuration map
(b) Path computed for a grayscale configuration map
(c) Angular speed for the grayscale path[deg/s]
(d) Angular acceleration for the grayscale path[deg/s2]

From the node(θi, tj, ωk), is it possible to advance using the accelerationa

and reach the node corresponding to(θi + ωk ∆t + a
(∆t)2

2
, tj +∆t, ωk + a∆t).

This is an edge in the graph having the costC∗

edge = ka a
2 .

The costs put on velocities are modelled as node costs. Everynode corre-
sponding to(θi, tj, ωk) has a velocity cost equal tokω (ωk)

2.
Also, every node has a cost corresponding to equation (17), which is equal to

1− fR(θi, T
(j)
L) . Therefore, the cost of a node is:

Cnode = kω(ωk)
2 + 1− fR

(

θi, T
(j)
L

)

(21)

15

The costs on nodes on a graph can be transferred on the incoming edges, therefore
the edge cost becoming:

Cedge = ka a
2 + kω(ωk)

2 + 1− fR

(

θi, T
(j)
L

)

(22)

If a delay has to be introduced, the edge cost increases with acomponent
corresponding toCdelay from equation (18). This allows edges to traverseCobs, in
order to ensure that a solution is found even ifCfree is not conex; however, these
edges should have a much higher cost, so that this solution isselected as a last
resort.

By summing the edge costs for an entire path, the cost functionis equal to
Cpath from equation (19).

Because of this mode of cost assignment, the Dijkstra algorithm will minimize
Cpath, finding the optimal solution for the discretized problem.

An example of running the Dijkstra algorithm over a binary configuration map
is given in Fig. 10. This is the smoothest possible solution for the rotary table
(with respect toCaω), but the path touches the obstacles, and therefore the robot
arm will reach its joint limits, which is not desirable.

Running the same algorithm on the graylevel configuration mapgives the re-
sult from Fig. 10 (b), where the planned path does not touch the edges of the ob-
stacles, the motion is smooth and the acceleration rates aremuch lower than those
in Fig. 9, obtained with the Local Maxima heuristic algorithm. As the discretiza-
tion steps become smaller, the solution found by the Dijkstra algorithm converges
to the optimal solution for the continuous problem.

The graph used in this algorithm can grow very large, as its size grows with the
third power of the number of discretization steps of the 3D configuration space.
If the space uses 100 steps on every dimension, the graph has 1,000,000 nodes,
which is too much for a real time solution. However, the Dijkstra algorithm offers
a reference trajectory, to which the solutions found by the other algorithms can be
compared.

4.4. ”Ray Shooting” heursitic algorithm

This algoritm attempts to provide a solution close to the oneobtained with
Dijkstra’s algorithm, while being suitable for a real-timeimplementation, which is
required because the adaptive path generator may change thescanning trajectories
or add new ones while the geometry of the scanned part is beingacquired.

At every time stepk, the algorithm looks aheadp future time steps, that is,
from k + 1 throughk + p . Over this range, it tries to perform a motion with

16

constant angular acceleration, to ensure the smoothness ofthe planned path. The
algorithm uses a finite set of acceleration valuesaj, j = 1, na, and for every
accelerationaj, a possible path is evaluated, starting from the current state and
spanning on the followingp time steps. From the set of paths, the path having
minimal cost value is chosen. This path corresponds to an acceleration equal to
aj,best, and the motion from time stepk through time stepk+1 will be performed
using this acceleration. The planning algorithm advances to the next step and re-
computes the paths, therefore at every time step it makes a decision. This means
that at every time step there is a finite number of computations that have to be
done, which make possible running the algorithm in real time.

Computing the path using a given acceleration is done by applying equations
(14) and (15) over the desired range, and evaluating the costis done using (19).
The path computation stops if an obstacle is reached, and a cost penaltyCpen is
added to the path, in order to favor the rays that did not hit any obstacle.

Algorithm 2: ”Ray Shooting” heuristic

θ← θ
(0)
R

ω← ω
(0)
R

for j = 1 to n−1 do

for i = 1 to na do
Ci← evalpath(θ, ω, Ai, j +1,

min(j + p, n))

i← argmin(Ci)
a← Ai

θnew← θ+ω ∆t +a
(∆t)2

2

if fR

(

θnew, T
(j)

L

)

then

ω← ω+a ∆t

θ
(j)
R ← θnew

ω
(j)
R ← ω

else
fall back using Algorithm 1

Function C = evalpath(θ0, ω0, a, jini, jfin)

θ← θ0

ω← ω0

C← 0

for j = jini to jfin do
ω← ω+a ∆t

θ← θ+ω ∆t +a
(∆t)2

2

if fR

(

θ, T
(j)

L

)

then

C←C + ka a2 + kω ω2
− fR

(

θ, T
(j)

L

)

else
C←C +Cpen

return

An example of running the Ray Shooting heuristic over the tested configura-
tion map is given in Fig. 11. The figures show the path chosen until the current
step, and the rays which determine the choice for the next step. In this example,
the rays analyze the configuration map within 70 discrete time steps ahead.

In the first graph, Fig. 11a, the rays can ”see” a solution for avoiding the
obstacles by turning the table clockwise, i. e.θR decreasing, thus avoiding both
obstacles on their ”left” side. In the second graph, the raysbegin to see an alternate
solution, which would avoid the second obstacle on its ”right” side, by changing
the direction of the rotation of the table. Since the acceleration needed to change

17

(a) (b)

(c) (d)

Figure 11: Ray Shooting example:
(a) The rays found a solution by avoiding both obstacles on the left side
(b) One of the rays avoids the second obstacle on the right side
(c) The algorithm decides to avoid the second obstacle on theright
(d) The algorithm has almost finished.

Figure 12: Speed and acceleration obtained by Ray Shooting algorithm

the rotation is smaller than the acceleration needed to avoid the second obstacle on
the left, the planner chooses to reverse the rotation direction, resulting the solution
from Fig. 11c.

The planned solution is shown in the last graph. The rotary table trajectory is
smooth and far from the forbidden regions, therefore the robot arm is not driven
close to its joint limits. This solution satisfies the designrequirements, has a shape
similar to the one computed by Dijkstra algorithm, and it canbe computed in real
time.

The solution obtained by this algorithm is much smoother than the local max-
ima path, and is closer to the path computed by the Dijkstra algorithm. The ac-
celeration rate for the two paths is comparable, as it can be observed by com-
paring Fig. 12 with Fig. 10. The planned path exhibits some small peaks in the

18

Figure 13: Another example of Ray Shooting algorithm. The planned path wraps around (i.e. the
table performs more than one complete rotation)

acceleration, whose effects are minor and can be removed with a smoothing post-
processing routine.

In Fig. 13, another example of a path planned with the Ray Shooting algorithm
is presented. The path starts from−38 ◦ and ends at637 ◦, or−83 ◦ when wrapped
around, the total amount of rotation being675 ◦.

5. Conclusions

This article presented the problem of solving a redundant 7-DOF inverse kine-
matics problem, which usually has an infinite number of solutions. The motion
planning problem has two constraints, the speed and the acceleration of the rotary
table, which are used in order to achieve a smooth table motion, since there is no
rigid mechanical fixture between the table and the scanned part.

The problem was modelled in order to find the minimal cost paththrough
a configuration space. The Dijkstra algorithm gave the optimal solution to the
problem, however it was too slow for a real time implementation. A heuristic
algorithm was proposed, which is able to compute a smooth path in real time,
while respecting the imposed restrictions.

The heuristic algorithm is implemented as a module for the laser scanning
software, and it runs on the PC which serves the 3D reconstruction system by
performing the real-time planning of the rotary table and sending the planned
result to the robot and rotary table controllers.

The proposed algorithm can be used in any other applicationswhich involve
a robot moving on a 3D continuous path along a workpiece, while performing

19

a technological operation, i. e. welding, edge polishing, and there is a redundant
degree of freedom whose motion has to be planned in order to achieve various con-
straints, such as collision and singularity avoidance, while maintaining a smooth
trajectory.

Acknowledgements

This work is funded by the National Council for Scientific University Re-
search, in the framework of the National Plan for Research, Development and
Innovation, grant 69/2007, and by the Sectoral OperationalProgramme Human
Resources Development 2007-2013 of the Romanian Ministry of Labour, Family
and Social Protection through the Financial Agreement POSDRU/6/1.5/S/19.

References

M. Spong, M. Vidyasagar, Forward Kinematics: The Denavit-Hartenberg Con-
vention. In: John Wiley and Sons, Inc., Robot Modeling and Control. 2005, p.
71-83.

L. Sciavicco, B. Siciliano, Modelling and Control of Robot Manipulators,
McGraw-Hill, London, 1996.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

P. I. Corke, A robotics toolbox for MATLAB, IEEE Robotics and Automation
Magazine, Vol. 3, n. 1, pp. 24-32, March 1996.

Th. Borangiu, F. Ionescu, Robot Kinematics, In: AGIR and Editura Academiei
Romne, Robot Modelling and Simulation, Bucharest 2002, p. 122-140

Adept Technology, Inc., Six-Axis Robot Configuration Singularities, March 2007

T. H. Cormen et al., Single Source Shortest Paths, In: The MIT Press, Introduction
to Algorithms, 2000, p. 527-531.

G. Impoco, P. Cignoni, R. Scopigno, A Six-Degrees-of-FreedomPlanning Algo-
rithm for the Acquisition of Complex Surfaces, International Journal of Shape
Modeling, Vol. 11, no. 1, June 2005, p. 1-23.

Herbert G. Tanner and Kostas J. Kyriakopoulos, Nonholonomic Motion Planning
for Mobile Manipulators, Proceedings of ICRA 2000

20

B. I. Kazem, A. I. Mahdi, A. T. Oudah, Motion Planning for a RobotArm by
Using Genetic Algorithm, Jordan Journal of Mechanical and Industrial Engi-
neering, Vol. 2, No. 3, Sep. 2008, p. 131-136

J. Barraquand et al. (1997) A Random Sampling Scheme for Path Planning, The
International Journal of Robotics Research, Vol. 16, No. 6, 759-774 (1997)

Micha Sharir, Algorithmic Motion Planning, in Handbook of Discrete and Com-
putational Geometry Second Edition, CRC Press, Chapter 47, 2004

D. Halperin, L.E. Kavraki, J.C. Latombe, Robot Algorithms. InAlgorithms and
Theory of Computation Handbook, CRC Press, Chapter 21, pp. 21-1–21-21,
1999.

Y.K. Hwang, N. Ahuja, A potential field approach to path planning, IEEE Trans-
actions on Robotics and Automation, Vol. 8, Issue 1, p.23-32,1992.

S. R. Buss, Introduction to Inverse Kinematics with Jacobian Transpose, Pseu-
doinverse and Damped Least Squares methods, Department of Mathematics
University of California, San Diego, 2009.

T. Yoshikawa, Dynamic manipulability of robot manipulators, Journal of Robotic
Systems, 2 (1985), pp. 113–124.

Th. Borangiu, A. Dogar, A. Dumitrache, Calibration of Wrist-Mounted Profile
Laser Scanning Probe using a Tool Transformation Approach,The 18th Intl.
Workshop on Robotics in Alpe-Adria-Danube Region - RAAD’09, Brasov, Ro-
mania.

21

