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Abstract—This paper proposes a set of techniques for predic-
tive collision avoidance which ensure robust operation of robot
applications. Implementation issues for applying the techniques
to current state-of-art robots are presented, including integration
with manual and automatic operation modes.

Index Terms—Collision detection, robust operation, accidental
damage prevention, robot motion prediction

I. INTRODUCTION

Collision detection, also known as interference detection or
contact determination, is a fundamental tool in computer games
and animation, physical simulation robotics and computer-
aided design and manufacturing (CAD/CAM). In these appli-
cations, solid bodies are not allowed to penetrate each other;
here, collision detection automatically reports a geometric
contact when it is about to occur or has already occured.

While higher-end physics simulations may consider
deformable objects, collision detection in robotics and
CAD/CAM can be successfully implemented using rigid bod-
ies (of course, unless the robots manipulate deformable parts).

Solids involved in collision detection can be geometrical
primitives (box, sphere, cylinder), polygonal meshes, algebraic
surfaces or splines.

This problem has been extensively studied in the literature,
and many algorithms are available for collision detection: there
are general algorithms for dealing with arbitrary polygonal
meshes with no particular structure (also called polygon soups),
and particular algorithms, which exploit properties such as
convexity or temporal coherence for faster queries.

Usually, the general notion of collision detection encom-
passes the following elements:
• proximity detection, which refers to the minimum distance

between two solids
• collision detection, which detects whether two solid bod-

ies touch each other
• collision response, which computes the changes in motion

of the solid bodies after a collision
In 3D computer aided design (CAD), the following queries

are usually performed:
• clash (intersection) detection: detect whether two bodies

intersect each other
• tolerance verification: detecting whether two objects are

closer than a given tolerance
• distance computation: computing the minimum distance

between two objects

Traditionally collision detection (CD) was discrete: it tested
overlapping between two static instances of moving objects;
however, CD routines might ignore collisions between two
fast moving objects (e.g., they may not notice a bullet passing
through a narrow wall). In contrast, continuous collision de-
tection techniques (CCD) are guaranteed to find the collision
which has occured between two given static instances of the 3D
scene, although they require more processing power than CD.
Recent research efforts concentrate on optimizing continuous
collision detection, and also on applying it to deformable
objects, which is useful for more realistic simulations.

Two older surveys are avaliable in [1] and [2]; however,
they only present non-continuous collision detection methods.

II. CASE STUDY: REVERSE ENGINEERING PLATFORM

Collision avoidance techniques were studied in the context
of a reverse engineering platform, which integrates:
• a short range laser scanning sensor
• a 6-DOF vertical robot arm, which sweeps the laser sensor

around the scanned part
• a rotary table (1-DOF), which holds the scanned part
• a 4-axis CNC, able to create 3D parts from raw stock
The scanned part can be placed on the rotary table; therefore

the scanning system is a redundant mechanism with 7 degrees
of freedom (DOF). The extra DOF is used for optimal planning
the motion of the rotary table, satisfying the following criteria:
• ensure a smooth motion of the rotary table, in order to

allow the part to be placed without requiring any fixture
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Fig. 1. Overview of the reverse engineering platform
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Fig. 2. The 3D scanning system

• avoid singular configurations in the robot arm, which
would cause high joint speeds, low accuracy in scanning
and unexpected end-effector movements

• avoid collisions between the following items:

– laser probe with robot arm itself (Figure 3)
– robot arm and laser probe, with rotary table
– robot arm and laser probe, with the scanned part
– robot arm and CNC milling machine

• minimize scanning time

In this scenario, collision detection is required at the motion
planning stage, in order to make sure the robot motion, which
is computed automatically by a planner, does not collide with
any of the objects in the robot environment.

A real-time collision detection can be also employed during
the use of the laser scanning system. In this way, the collision
detection engine acts as an extra layer of protection, preventing
accidental damage from erroneus user input or even from a
programming mistake in the scanning strategy.

Finally, the CAM software component, which converts a
3D surface model into a set of CNC milling toolpaths, has
to compute collision-free safe toolpaths, without the risk of
damaging the milling cutter or the clamping fixtures. Since
NC paths are generated as a series of 2D steps, collision
avoidance is integrated into the toolpath generator without
explicitely making queries of 3D rigid body intersections. An
algorithm for generating collision-free milling paths with tool
engagement control for arbitrarily complex raw stock and part
geometry was proposed in [3].

Fig. 3. Possible collision between laser sensor and robot body

Fig. 4. Predefined scanning patterns: grid, cylindrical and spherical

III. COLLISION DETECTION FOR ROBUST OPERATION

The 3D scanning module can be operated in two modes:
• From the manual control pendant (MCP) of the robot
• In automatic mode, where scanning trajectories are gen-

erated by the control software
These two modes are also employed in most robotic tasks.
In manual mode, the robot is usually moving at low speeds

and the user is assumed to be careful not to cause collisions.
However, a robust user interface shouldn’t rely on correct user
input; it should not allow the user to produce damage to the
system no matter what the user input might be.

In automatic mode, the robot moves along parameterized
scanning patterns (Figure 4), which also depend either on the
user input, who may specify approximate part size, number
of passes or scanning speed, or may rely on autodetection-
However, users may make mistakes, and autodetection may
produce incorrect results. It is difficult to predict when a certain
combination of scanning parameters will lead to a collision
or not; therefore, even after checking that all the parameters
retrieved from user input are in the correct range, there is
still possible that the scanning parameters may make the robot
collide with the nearby equipment.

The robot controller supports very limited collision de-
tection primitives, and only checks the end-effector point
against maximum 4 obstacles, which can have one of the
following shapes: axis-aligned box (AABB), cylinder, sphere
or frustum [4]. These obstacles can only be specified in a robot
configuration program, and cannot be changed while a user
application is running on a robot.

These limitations make it very difficult to define obstacles
which enclose tightly the robot, sensor and table in order to
provide robust operation with respect to collisions.

A. Collision detection during manual operation

The proposed protection scheme is to have a dedicated task
for realtime collision checking during robot operation. The
protection task runs on the PC, continuously monitoring the
robot position and velocity.

In manual mode, no user program is allowed to move
the robot or change its speed, due to internal protection
mechanisms implemented in the robot controller.

When the robot is heading to a colliding situation, the only
actions that could be taken from a user program are:
• Give visual feedback on the MCP
• Give audible feedback to the user
• Assert the emergency stop signal (only in extreme cases)
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Fig. 5. Protection scheme for collision-free manual mode operation

An overview of the protection scheme is given in Figure 5.
The first option is useless if the user is not looking at the

MCP, which is the most likely situation. The second option
uses the control pendant’s internal speaker to emit warning
beeps, which change in intensity as the robot approaches an
obstacle. If a collision is imminent, the only action allowed by
the robot controller is to assert the emergency stop signal.

A more useful approach would have been to automatically
reduce the robot speed when a collision is imminent; however,
in order to implement this behaviour, safety mechanisms from
the robot controller would have to be bypassed.

Warnings should be given only when two possibly colliding
bodies become closer. When the user moves the robot away
from the colliding situation, no warning should be given.

To implement this, the protection module should know also
in which direction the robot is moving. User programs do not
have access to the buttons pressed on the control pendant; this
information is accessible only inside the MCP. However, in
manual mode it is relatively easy to predict the robot motion
with good accuracy, since the robot can be moved in a single
direction at a time. The possible directions are:
• Cartesian translation (any direction in 3D space)
• End-effector rotation (around any fixed axis)
• Joint motion (rotate only one robot joint at a time)
Therefore, a predictive collision detection mechanism can

be implemented. The predictor has to detect the type of motion:
• A joint interpolated motion
• A Cartesian motion (translation and/or rotation)
A model for describing and predicting joint-interpolated

motions is given by:

J
(t+1)
i = J

(t)
i + s δji, i = 1, n (1)

where the robot has n independent joints, J (t)
i is the absolute

position of ith joint at time t, δji are weights which represent
the relative speed of the ith joint and s is the speed factor. This
model represents general joint interpolated motions; however,
in manual mode, only one joint is moving at a time. However,

due to vibrations, all the joints will appear to be moving,
but only one of them with a significant amount (let’s say joint
number k). Mathematically, |δjk| >> |δji|, i 6= k for a fixed
k. However, this does not have any significant negative effects
in the prediction process.

Therefore, the model parameters are [δji], i = 1, n. These
parameters remain constant throughout the motion and can be
identified by nonlinear minimization. In contrast, s may change
freely throughout the motion due to acceleration.

Cartesian motions are described by linear interpolation
in X , Y and Z, and spherical linear interpolations (slerp)
in orientation. Therefore, the rotation axis remains constant
throughout the Cartesian motion. A model for predicting linear
motions in Cartesian space, where the end-effector is allowed
to change its orientation, is:

X(t+1) = X(t) + s δx

Y (t+1) = Y (t) + s δy

Z(t+1) = Z(t) + s δz

θ(t+1) = θ(t) + s δθ

R(t) = R[rx,ry,rz](θ(t)) ·R(0) (2)

where (X,Y, Z,R) is the Cartesian end-effector position
and orientation (R is a 3 × 3 rotation matrix), R(0) is the
initial end-effector orientation (at t = 0), and [rx, ry, rz] is
the rotation axis throughout the motion, which is constant.

The model parameters, which remain constant throughout
the motion, are [δx, δy, δz, δθ, rx, ry, rz].

The decision for the motion type (Joint or Cartesian) is
taken by trying to fit both models and select the one which
gives lower residuals.

Transformations between Cartesian and Joint spaces are
given by direct and inverse kinematics functions.

B. Collision detection during automatic operation

Even if the trajectory planner is programmed to generate
collision-free paths, nobody can be sure that there are no
programming mistakes in the robot application software. In
semi-automatic modes, where the robot moves between points
taught by the user, trajectory planning is performed solely
on the robot controller, which does not check for collisions;
however, collision checking can be done before sending a
motion instruction to the robot. Of course, this assumes the
robot program runs from the PC terminal.

The collision detection mechanism described in this section
is designed to be as general as possible, in order to be useful
regardless of the particular robot application. The implementa-
tion is a watchdog task, which analyzes the subsequent motion
transparently, while the program is running. If a collision
becomes imminent, the following actions can be taken:
• User feedback (visual or auditive)
• Gradually reduce monitor speed1(this can be performed

even while another program is running)
• Trigger the emergency stop (only in extreme cases)

1Monitor speed is a global setting of the robot, regardless of program speed
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Fig. 6. Protection scheme for collision-free automatic operation

In automatic operation, only one program is normally
allowed to move the robot. However, there may be additional
program tasks which can watch the robot motion, i.e. read the
current position within a loop, and also retrieve the destination
of the current motion. Therefore, the watchdog task knows in
advance the robot trajectory, and no prediction is necessary.

A schematic view of the protection scheme for automatic
operation is given in Figure 6.

Experimental results: Robot position query can be per-
formed from PC terminal every 32 milliseconds via Ethernet.
A major cycle of the robot controller has 16 milliseconds.

However, when network delays occur, the PC would not
have the possibility to slow down the robot quickly enugh.
Therefore, a protection mechanism has been employed: if the
time since last message received from the watchdog is higher
than normal, the monitor speed on robot decreases gradually,
even until a full stop if network delays are very high. However,
the method is not yet reliable for high speed operations.

IV. COLLISION DETECTION FOR PATH PLANNING

A heuristic planning algorithm for the robot arm and rotary
table was presented in [5]. The 7-DOF mechanism (robot +
rotary table) is redundant; this redundancy can be exploited to
satisfy additional constraints. The angle of the rotary table, θR,
may be chosen freely; once this angle is fixed, the remaining
6-DOF can be uniquely chosen from the possible inverse
kinematics solutions.

The algorithm provides support for additional constraints
specified as real-valued functions fi, with 0 ≤ f ≤ 1, which
evaluate any static robot pose, with the following meaning:
• fi = 0: the constraint is not satisfied
• fi = 1: the constraint is fully satisfied
• 0 < fi < 1: the constraint is only partly satisfied
If there are many constraints, their functions can be mul-

tiplied, resulting a metric for evaluating any static robot
configuration, with the same interpretation of values:

f =
m∏
i=1

fi (3)

where m is the number of constraints.
If only one constraint is not satisfied (fi = 0), the specific

robot configuration is avoided, since f = 0.

A set of constraints which keeps the robot away from its
joint limits, ensuring a natural configuration, is:

f∗j (θj) =

(
sin

(
θj − θmin

j

θmax
j − θmin

j

· π

))γj

(4)

where 1 ≤ j ≤ 6 is the joint number.
Static constraints can be represented graphically as

graylevel configuration maps. An example is given in Figure 7
and 8, where the two dimensions of the map are the rotary
angle θR and the discrete time t. The planner attempts to find
a path from a start configuration (leftmost column in the map)
to a final configuration (rightmost column in the map) which,
while obeying all the constraints at least partly, has to be as
smooth at possible and also have to obey the maximum angular
speed and acceleration values for the rotary table. The robot
motion is not constrained explicitely, but high speeds in robot
motions can be avoided by adding static constraints which do
not allow the robot to reach singular configurations.

Dynamic constraints for the rotary table are specified using
scalar weights for angular speed and acceleration, ka and kω .
The heuristic algorithm, called Ray Shooting, attempts to try
various constant-acceleration paths (rays) and selecting the one
which has the lowest cost, at every time step. This strategy
ensures low variations in the angular speed of the rotary
table, which allows scanned parts to sit on the table without
any additional fixture. The planning algorithm also attempts
to reduce scanning time, energy consumption and increased
scanning accuracy by avoiding near-singular configurations.

A constraint suitable for avoiding collision detection de-
pends on the minimal distance between two rigid bodies, dmin.
If dmin is less than a threshold dlowmin, the constraint is not
satisfied, and this configuration is forbidden (the planner will
never drive the robot through this configuration). If dmin is
higher than dhighmin , the constraint is fully satisfied:

fC(dmin) =


0, dmin < dlowmin

sin
(
dmin−dlow

min

dhigh
min −dlow

min

· π
)γC

1, dmin > dhighmin

(5)

Fig. 7. Grayscale configuration map for static constraints

Fig. 8. Cylindrical view of the configuration map



The exponent γC controls the constraint intensity for dmin
between [dlowmin...d

high
min ]: higher values rejects values closer to

dlowmin, while lower values are more permissive.
Of course, two successive bodies in the kinematic chain

should not be tested for collisions, since they are always
touching each other.

The parameters dlowmin and dhighmin can be chosen the same for
every pair of possibly colliding bodies, or can be adjusted for
each pair. For example, the distance between the laser sensor
and 4th robot link is by design 10 milimeters, so there’s no
point in setting a higher value for dhighmin . However, if one has
to keep the distance between the laser sensor and the rotary
table at least 20 mm, and preferably 50 mm, then dlowmin and
dhighmin should be set to 20 and 50 respectively.

V. IMPLEMENTATION ISSUES

The elements involved in collision detection are geometric
models of their physical counterpart (Figure 9). For the robot
arm, the meshes are imported from the CAD files. The rotary
table has a very simple mechanical structure, and can be
modelled as a stack of two cylinders. The laser sensor did
not come with a 3D CAD file, but its shape was easily
reconstructed from its dimensions, since it did not have a
complex shape.

Other surrounding objects in the robot space can be digi-
tized with the laser scanner itself. These objects include the
CNC milling machine, the working table mounted near the
robot arm and the mechanical parts placed on the table.

State-of-art collision detection algorithms are able to exploit
the convexity of the geometries in order to reduce computa-
tion time and provide smooth real-time operation. Figure 10
shows the difference between the complete 3D robot model
(left) and the one composed from the convex hulls of each
segment (right). The number of triangles in each complete (and
concave) mesh is 5000; the convex hulls have between 350 and
1200 faces. From a visual point of view, the meshes are not
suitable from rendering, but would give satisfacatory results
for collision detection even without the full meshes.

A protective convex hull, which completely encloses the
underlying geometry and provides a safety margin around
each link, was proposed in [6]. This also has the additional

Fig. 9. Geometric models of the 3D scanning system components

advantage that the triangle mesh can be simplified even more,
for further speed increase.

Convex hull and mesh simplification were performed with
the open source tool MeshLab [7].

Fast implementations use preliminary tests with simple
geometric primitives, e.g. bounding spheres (which are easiest
to check) and bounding boxes (which may approximate the
true shape better). Bounding boxes can be aligned with the
World axes (AABB2) or can have arbitrary orientation (OBB3),
e.g. the one which minimizes the box volume. For articulated
bodies, a hybrid approach can be used: the AABB is computed
for each segment at the beginning of the simulation; then, while
the articulated body moves, the AABBs are reoriented using
the trasformation matrix for each link (Figure 10, right). In
this way, only the box corners have to be transformed during
the articulated motion. For pure AABB and OBB models, the
bounding box would have to be computed at every step from
a much larger data set, which would limit the usefulness of
the bounding boxes.

Bounding boxes alone are not suitable for collision detec-
tion, since they may give many false positives. However, it
is also possible to approximate a shape using hierarchies of
AABBs, OBBs or bounding spheres.

A. Software implementations of collision detection

There are two main classes of pubicly available libraries
which implement collision detection:
• rigid body dynamics simulators, used for computer games
• standalone libraries for collision and proximity queries.

2AABB - Axis Aligned Bounding Box
3OBB - Oriented Bounding Box

Fig. 10. 3D models for robot and laser probe: accurate (for rendering), convex and intermediate oriented boxes (for fast collision detection)



1) Rigid body dynamics simulation packages: There are
numerous rigid body dynamics simulators which implement
state-of-art collision detection algorithms. They may be used
for collision queries alone; however, with a possible overhead.

Rigid body engines available under proprietary licenses
include NVidia Physx (formerly known as AGEIA and
Novodex), Intel HAVOK, Newton Game Dynamics and True
Axis. There are also engines available under public licenses,
such as BSD, ZLib and GPL, including Open Dynamics
Engine (ODE), Bullet, JigLib and Tokamak. Most of the above
engines can be wrapped in a unified abstraction system, like
PAL, OPAL and GangstaWrapper. A comparative test among
engines supported by PAL may be found in [8].

2) Libraries for discrete collision queries:
Limited to convex polyhedra:
• GJK - Gilbert, Johnson and Keerthi distance routine; runs

in expected constant time [9]; used in Bullet Physics;
• I-COLLIDE: exact collision detection for large environ-

ments [10]; uses Lin-Canny Closest Features [11]
• SWIFT: supports also bodies composed of convex pieces.

Queries: clash, distance and contact determination [12]
For non-convex polyhedra, also known as polygon soup:
• RAPID: uses OBBTree, a hierarchy of OBBs [13]
• PQP: intersection, distance and tolerance verification [14]
• V-COLLIDE: works with a large number of objects; uses

3 tests: n-body, hierarchical OBB and exact. [15]
• SWIFT++: for arbitrary polyhedral models. Queries:

clash, tolerance, distance and contact determination [16]
• V-CLIP: Voronoi Clip algorithm; similar to Lin-Canny,

with less complexity and improved robustness [17]
• OPCODE: memory-optimized AABB-tree [18]
• GIMPACT: implemented in ODE and Bullet.
3) Libraries for continuous collision detection (CCD):
• FAST: CCD for general, rigid polyhedra [19]
• CATCH: CCD for articulated models [20]; uses FAST for

solid body CCD and SWIFT++ for distance queries
A proof-of-concept implementation of robot collision de-

tection was implemented using Open Dynamics Engine as
a wrapper for collision detection, which uses OPCODE and
GIMPACT libraries. The simulation is based on the framework
presented in [21], and it was implemented in Python, using
PyODE for low-level ODE calls and cgkit (Python Computer
Graphics Kit) for importing triangle meshes.

VI. CONCLUSION

The paper presented practical considerations about imple-
menting a predictive collision detection routine, which im-
proves robustness of existing robotic applications. A watchdog
task runs on a PC workstation, continuously monitoring the
robot motion, while having also knowledge of geometries of
robot arm and nearby equipment. The watchdog intercepts
the robot motion without disturbing the application program,
using a prediction scheme when necessary. Collision detection
queries for the entire scene run in 10 miliseconds on a
Core2Duo CPU, therefore the bottleneck is the communication

layer between the PC and robot. Future work will improve
robustness and generality for high-speed robot applications.
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