
Heuristic Solution for Constrained 7-DOF Motion
Planning in 3D Scanning Application

Theodor Borangiua, Alexandru Dumitrachea, Anamaria Dogara

a Centre for Research and Training in Industrial Control
Robotics and Materials Engineering

University Politehnica of Bucharest, RO

Abstract

The laser scanning system presented here consists of a medium range triangula-
tion based laser probe mounted on a 6-DOF articulated robotic arm, having the
workpiece attached to a rotary table, which represents the7th degree of freedom.
This article focuses on planning the motions of the rotary table and the robotic arm
in order to follow a desired sequence of scanning toolpaths,which are defined in
the scanned workpiece’s reference frame.

Key words: motion planning, inverse kinematics, 7-DOF manipulator,
3D laser scanning
PACS:45.40.Ln, 45.40.Bb

1. Introduction

This work is part of a project whose goal is to develop a 3D laser scanner sys-
tem by using a 6-DOF vertical articulated robot arm to move a triangulation-based
laser probe around the object of interest, which is placed ona rotary table. The ma-
nipulator has a spherical working envelope with a radius of 650 mm and the laser
probe is able to measure distances from 70 to 250 millimetreswith an accuracy of
30 µm. An overview of the scanning system is illustrated in Fig. 1.The robotic
arm will move around the workpiece being analyzed using computer-generated
adaptive scanning paths, which are computed in real-time while the scanning sys-

Email addresses:borangiu@cimr.pub.ro (Theodor Borangiu),
alex@cimr.pub.ro (Alexandru Dumitrache),dogar@cimr.pub.ro (Anamaria Dogar)

URL: www.cimr.pub.ro (Theodor Borangiu)

Preprint submitted to Control Engineering Practice June 4,2009

tem is discovering the features of the object. The resulting3D model will be used
for reproduction of the scanned parts on a 4-axis CNC milling machine.

Figure 1: Main components of the scanning system

2. Problem description

The scanning trajectories are defined as motions in a reference frame attached
to the workpiece. Some examples of scanning trajectories are given in Fig. 2a-
d. The trajectories are discretized, i. e. described by a series of closely spaced
locations (which include position and orientation), and the path between these
locations is approximated with linear interpolation. The position change between
two discrete steps is executed as a straight line motion. Forthe orientation change,
the rotation matrix between two discrete steps is represented in axis-angle format,
and the linear interpolation is performed on the rotation angle, keeping the rotation
axis fixed.

2

The scanning trajectories are generated as sequences of motions, described by
positions and orientations of the laser probe with respect to the workpiece. Since
the robot arm has 6 degrees of freedom, this appears to be sufficient in order to
achieve any desired position and orientation. The reason for using the rotary table
is that the robotic arm alone is not able to look at the piece from the front side
and then from the back side, especially for large workpieces. For the trajectories
in Fig. 2 (a) and (b), it is clear that the workpiece has to be rotated on the table in
order to complete the motion. For the trajectories in Fig. 2(c) and (d), if the object
is small enough, it will be possible to perform the zig-zag path without rotating
the table, but for larger objects, an out-of-range condition for the robot arm will
occur, and that can be avoided by rotating the table.

A straightforward solution is to incorporate the rotary table motion in the scan-
ning trajectory. This solution may be good for simple scanning patterns like those
presented in Fig. 2, where the solution for the rotary table motion is obvious.
However, as one of the aims of this work is to develop automated adaptive scan-
ning procedures, by discovering the workpiece’s concave regions which are hard
to reach (Impoco et al., 2005), the resulting trajectories will be more complex.
Also, the generation of adaptive scanning trajectories is not an easy task, so it was
decided to make the task of rotary table movement completelyautomated.

(a) (b) (c) (d)

Figure 2: Examples of scanning patterns: (a) spherical; (b)cylindrical; (c) zig-zag; (d) zig-
zag with tilted probe

The aim of this paper is to present an algorithm that determines automatically a
suitable trajectory for the rotary table, when a scanning path around the workpiece
is known. Input data for this problem consists of the scanning paths, which are a
series of locations (positions and orientations), in the workpieces reference frame.
The scanning system has to move continuously and synchronously the rotary table
and the robot arm, such as the laser probe reaches the programmed locations and
take measurements without stopping the system motion. Output data is a sequence

3

of joint values of the robotic arm and the angle of the rotary table, which give
the desired location of the laser probe with respect to the workpiece. In other
words, the problem presented here is the inverse kinematics(IK) for a 7-DOF
kinematic chain. In addition, the computed solution has to satisfy the following
requirements:

• minimize the accelerations and limit the speed of the rotarytable;

• avoid collisions with any obstacles which may be within the manipulators
range, or between the manipulator and the rotary table;

• flexible reach of the robotic arm and avoiding the proximity of singular
configurations

3. Problem modelling and formalization

3.1. Kinematics model
From a kinematics point of view, the 6-DOF robot arm and the rotary table are

modelled using the Denavit-Hartenberg convention (Spong et al., 2002), as shown
in 3(a) and 3(b). The rotary table may be considered fixed and the robotic arm
rotating around the workpiece, hence the effect of the7th degree of freedom is
applied before the other 6 links in the kinematic chain. The position of the rotary
table relative to robot is modelled therefore as a link 0, or link R, whereθR is the
rotary angle variable.

The location of the laser probe with respect to the workpieceis specified as
a homogeneous transformation matrix (HTM), which containsinformation about
the cartesian position and the orientation. The orientation may be specified in
yaw-pitch-roll angles or axis-angle formats, but it shouldbe converted to the HTM
format. The scanning trajectory is specified as a series of HTMs, each matrixT (k)

L

corresponding to a discrete time stepk.
The location of the laser probe with respect to the manipulator base isT (k)

M ,
which is the product between the direct kinematics solutionfor the 6-DOF arm,
and the tool transformTTL which specifies the location of the laser probe with
respect to the the robot arm flange, and is computed using a calibration procedure.

T
(k)
M = TDK

(

θ
(k)
1 . . . θ

(k)
6

)

· TTL (1)

The location of the rotary table with respect to the robot base isT
(k)
R

(

θ
(k)
R

)

, which

is a translation which shows the position of the table with respect to manipulator,

4

(a) Reference frame assignment (b) Denavit-Hartenberg parameters

Figure 3: Kinematics model of the scanning system

followed rotation aroundOZ:

T
(k)
R

(

θ
(k)
R

)

= T (−a0, 0,−d0) · RZ

(

θ
(k)
R

)

(2)

The inverse kinematics for the 6-DOF manipulator is solved by its controller unit,
and will be namedIK6:

θ
(k)
1...6 = IK6

(

T
(k)
DK

)

(3)

Remark 1: The problemIK6 is said to have a solution when there is a set of angles
θ

(k)
1 . . . θ

(k)
6 which satisfy the equation:

T
(k)
DK = TDK

(

θ
(k)
1...6

)

(4)

and the angles are within the allowed range for the manipulator.If the mathemat-
ical condition can be satisfied, but the joint values are out of the allowed ranges,
it will be considered thatIK6 has no solution.

5

3.2. Problem decomposition

The inverse kinematics of this 7-DOF chain can be solved in two steps:

1. Choose a suitable angle for the rotary table;
2. Solve the inverse kinematics for the 6-DOF manipulator and the angle cho-

sen at step 1.

Supposing that at time stepk, the laser probe has to be placed in the workpiece
reference frame at the locationT (k)

L , and the angleθ(k)
R was chosen, the position

of the laser probe with respect to robot should be:

T
(k)
M

(

θ
(k)
R

)

= T
(k)
R

(

θ
(k)
R

)

· T
(k)
L (5)

SinceIK6 usually has a finite number of solutions, and when a robot configuration
(LEFTY / RIGHTY, ABOVE / BELOW or FLIP / NOFLIP) is selected, a unique
solution can be chosen, and the planning problem would be solved:

θ
(k)
1...6 = IK6

(

T
(k)
M

(

θ
(k)
R

)

· (TTL)−1
)

(6)

Therefore, the 7-DOF planning problem is reduced to the planning of a single
joint value, the rotary table angleθ(k)

R , for all time stepsk = 1, n.
The rotary angle has to be choosen such as there exists at least one solution

for the second step. Therefore, a very simple solution can bederived. The rotary
angle can be modified, with fixed increments, e.g. 1 degree, until the IK6 problem
has a solution. This implies that every time the robot arm is out of range and

cannot reachT (k)
M

(

θ
(k)
R

)

, it has to wait until the table rotates to an appropriate

value ofθ(k)
R , for which IK6 has a solution. Using this trivial solution as a fall-

back method guarantees the resolution-completeness (S. M.LaValle et al., 2006)
of the planning solution.

3.3. The configuration map

The configuration space for this problem can be represented in its discrete
form as a two dimensional image, or map, where theX axis corresponds to the
discrete timek = 1, n, and theY axis corresponds to the rotary angleθR ranging
from −180 ◦ to 180 ◦ in n+1 equally spaced discrete steps. Since the rotary table
can rotate continuously, without any limit on the number of complete rotations,
the configuration map is periodic on theY axis.

6

The mapping from the continuous rotary table angleθR to the discrete line
indexi in the mapMB is:

c2d(θ) = round

(
(θ + 180 ◦) · n

360 ◦

)

mod n

d2c(i) =
(i − 1) · 360 ◦

n
− 180 ◦ (7)

The pixel value at location(i, j) in the mapMB corresponds therefore to time step
j and to rotary angleθ(i)

R , and it has the following meaning:

MB(i, j) =

{

0 (black): IK6 has no solutions forT (j)
L andθ∗ = d2c(i)

1 (white): IK6 has solution for the above inputs.
(8)

This image will be called thebinary configuration map, and an example is shown
in Fig. 4. It will be shown later how the configuration map can be used to impose
additional constraints on the planned scanning path.

The white (allowed) regions on the map will be namedCfree , while the black
(forbidden) regions will be denoted asCobs. When considering the continuous
representation of the configuration space,Cfree is an open set, whileCobs is closed
(S. M. LaValle et al., 2006).

Given the mechanism geometry and limits, which are constantand determine
whetherIK6 has a solution or not, the configuration map depends only on the set
of desired scanning pathsT (j)

L .
Having defined the configuration map, the planning algorithmhas to find a

way throughobstacles(not necessary physical obstacles, but forbidden areas on
the map), from the starting rotary table angle, in the first column, to any position
in the last column. The evolution of the path through the configuration map is the
evolution of the rotary table angleθR so that the obstacles on the map are avoided.
Since the rotary table rotates continuously, there is no need for the robot arm to
wait, thus minimizing the scanning time.

3.4. The graylevel configuration map
As illustrated in S. M. LaValle et al. (2006), a shortest pathsolution through

the configuration space is likely to touch the obstacles, which is not desirable.
When the robot is close to the limits ofCobs, the robot is either close to the limits
of its joints, or to the limits of its working envelope, or close to a singular point.

In order to obtain a planning algorithm that does not touchesthe obstacles, but
maintains a sufficient distance, one has either to add borders toCobs, or modify the
interpretation of the map values inCfree to indicate the proximity of an obstacle.

7

The values of the map inCobs remain zero, which means that these are forbid-
den states. The values inCfree will be in the (0, 1] interval, showing that any of
these states are allowed, but also indicating how desirableis the state. Therefore,
states having higher values are more desirable than states having values close to
0.

Considering the joint limits of the robot for a given linkj, it is possible to
use a function which is equal to zero at the joint limits (θmin

j ≤ θj ≤ θmax
j), and

reaches its maximum value at the middle of the interval.

fj(θj) =

(

sin

(
θj − θmin

j

θmax
j − θmin

j

· π

))γj

(9)

A function showing the value of a given robot configuration can be constructed by
multiplying the individual joint functions:

fR (θ1...6) =
6∏

j=1

fj(θj) (10)

By adjusting the values of the exponentsγj, it is possible to control the shape of
the functions (Fig. 5b).

Thegrayscale configuration mapwill be represented as a 2D grayscale image,
with real values between 0 and 1, like the example in Fig. 5a, having the following
meaning:

MG(i, j) =

{

0 (black): IK6 has no solutions forT (j)
L andθ∗ = d2c(i)

fR (θ1...6) : IK6 has one solution:θ1...6
(11)

8

Figure 4: An example of binary configuration map

(a)

(b) (c)

Figure 5: An example of grayscale configuration map: (a) Plain view; (b) The value function for
an individual joint; (c) Cylindrical view

(a) (b) (c) (d)

Figure 6: Robot arm and laser looking at a workpiece from a given poseTL (eq. 12):
(a) Robot is near a ”too close” condition (table rotated at−25 ◦)
(b) Robot is near a ”too far” condition (table rotated at−95 ◦)
(c) Robot is not close to its limits (table rotated at−60 ◦)
(d) Value functionfR(θ, TL) for θ = [−180 ◦, 180 ◦] andTL from (12)

9

As the angle is represented on theY axis, and the table is able to make an
unlimited number of rotations, the path can wrap around on this axis, and the map
can also have a cylindrical representation, like in Fig. 5b.

When searching a path on theMG map, an algorithm has to take into account
both the differential constraints (speed and accelerations) and the value function
MG(i, j) , which will allow finding a smooth path for the rotary table, which will
not touch the configuration space obstacles.

In Fig. 6, the interpretation of a single column from the configuration map is
detailed. The robot was requested to look at the center of theworkpiece, at height
h = 50 mm, usingyaw = 0 ◦, pitch = 100 ◦ androll = 90 ◦, from a distance of
250 mm. The transformationTL relative to the workpiece is:

TL = T (0, 0, 50)RY (100 ◦)RZ(90 ◦)T (0, 0,−250) (12)

This transformation can be achieved using different valuesfor the rotary table
angle, as shown in the images (a)...(c) and on the graph (d). The angles on the
graph for which the functionfR is equal to 0 correspond to out of range configu-
rations for the robot. In Fig. 6d, the reader may observe the configurations from
(a), (b) and (c) marked on the graph. The first two configurations have a low value
of fR , which means they are near an out of range configuration and itis desirable
to be avoided. The configuration from (c) is near a local maxima of the function
fR , which means that it is much more desirable, as it is far from the joint limits.
Moreover, the robot arm stands in a natural (or relaxed) joint configuration.

3.5. Computing the configuration maps

In order to compute the value of a point on the mapMB(i, j) or MG(i, j),
one needs to know whether the desired transformationT

(j)
L can be reached by the

robot arm, and for the grayscale map, one also needs to know the joint values
of the robot arm, in order to compute the values offR in Cfree . Therefore, the
computer that runs the planning algorithm needs to know the inverse kinematics
(IK) function for the 6-DOF manipulator.

One solution is to use the inverse kinematics routines from the robot controller.
However, as the amount of IK calls would be very large, this solution is not prac-
tical. A better alternative will be to run the planner on a PC, which has much more
processing power than the robot controller. A straightforward solution is to use
a generic IK procedure, such as the one provided by Peter Corke’s Robotic Tool-
box (Corke, 1996). This approach has been implemented and found to be slow,
as the procedure from the toolbox uses an iterative method, the pseudoinverse of

10

jacobian. The solution is to use a closed form IK (CIKS) for the6-DOF robot
arm.

The equations of the closed formIK6(TDK) , which were derived using the
kinematic decoupling method for manipulators with spherical wrist, presented
in Borangiu et al. (2002), are given below. The values of the parameters were
given in Fig. 3(b). The robot configuration has a LEFT arm, ABOVE elbow and
NOFLIP wrist (see Borangiu et al. (2002) and Adept (2007)), therefore a single
solution is computed.

The first 3 joints give the position of the wristP , given by the cartesian vector
[P1,4, P2,4, P3,4]:

TP = T (0, 0,−d6) (13)

P = TDK · TP (14)

pwx = P1,4; pwy = P2,4; pwz = P3,4; (15)

θ1 = atan2(pwy, pwx) (16)

L1 = a2; L2 =
√

(a3)2 + (d4)2 (17)

L3 =

√
(√

pwx
2 + pwy

2 − a1

)2

+ (pwz − d1)
2 (18)

p =
L1 + L2 + L3

2
(19)

h =
2
√

p(p − L1)(p − L2)(p − L3)

L3

(20)

α1 = atan2
(

pwz − d1,
√

pwx
2 + pwy

2 − a1

)

(21)

α2 = arcsin
h

L1
(22)

θ2 = −(α1 + α2) (23)

θ3 = atan2(−a3, d4) − arccos
L1

2 + L2
2 + L3

2

2 L1 L2

+ 270 ◦ (24)

The remaining 3 joints give the orientation of the wrist. LetR0
3 be the rotation

matrix from the robot base to the3th link, R0
6 the rotation from base to the6th

link, andR3
6 the rotation of the spherical wrist:

R0
3 = RZ(θ1) · RX(−90 ◦) · RZ(θ2 + θ3) · RX(90 ◦) (25)

R0
6 = P1..3,1..3 (26)

R3
6 =

(
R0

3

)
−1

R0
6 (27)

11

SinceR6
3 = RZ(θ4) RY (θ5) RZ(θ6) from the spherical wrist geometry,θ4...6 are

ZY Z Euler angles:

θ4 = atan2
((

R3
6

)

2,3
,
(
R3

6

)

1,3

)

(28)

θ5 = atan2

(√
(

(R3
6)3,1

)2

+
(

(R3
6)3,2

)2

,
(
R3

6

)

3,3

)

(29)

θ6 = atan2
((

R3
6

)

3,2
, −

(
R3

6

)

3,1

)

(30)

The special cases whenθ5 = 0 andθ5 = 180 ◦ are handled by choosingθ4 = 0.
The equations (13) through (30) are not very simple, as they involve a lot of
trigonometric function calls, but their biggest advantageover a generic iterative
method is that they can be evaluated inO(1) complexity. A C# .NET imple-
mentation of the above equations is able to compute about 250.000 IK solutions
per second on a Pentium 4-M processor running at 2 GHz, which is more than
sufficient for the planning task.

In order to test whether the robot is able to move the laser probe in the pose
with respect to the workpiece, one will use the function ”inrange” which will be
defined below.

By combining equations (5) and (6), one can obtain the transformationTDK

required byIK6 :
θ1..6 = IK6

(
TR (θR) · TL · (TTL)−1) (31)

The functioninrangewill be defined as:

inrange(θ, TL) =

{
0, if eq. (31) has no solution or it is out of range
1, otherwise

(32)

In other words, the functioninrange is the continuous counterpart of the binary
configuration mapMB. The function will be called to compute the discrete map
imageMB. The function which defines the grayscale map is:

fR(θ, TL) =

{
0, if eq. (31) has no solution or it is out of range
fR

(
IK6

(
TR(θR) · TL · (TTL)−1)) otherwise

(33)

As a remark, the configuration maps MB and MG will not be computed for
every pixel in the actual algorithm implementation. The maps are described
and generated in order to illustrate the concept, and are displayed on the screen
for debugging purposes. The planning algorithm will use directly the functions
inrange(θ, TL) or fR(θ, TL) , and may cache the computed values in a matrix if
it is going to reference them many times, for an increase in speed.

12

3.6. Specifying additional constraints using the configuration map

The configuration map can be used to specify additional constraints on the
robot movement, for example, physical obstacle avoidance.There can be defined
cartesian obstacles of an arbitrary shape (square, cylinder, sphere) having known
dimensions, and multiply the functionfR with a new component, which is zero
if the robot hits the obstacle, 1 if the robot is far from the obstacle, and has inter-
mediate values if the robot is in the proximity to the obstacle, but not touching it.
This function can be computed by a collision avoidance routine, and its results are
integrated with the planner by using the above mentioned function. The same pro-
cedure can be used for avoiding singular configurations in the robot arm. These
situations can be avoided by using a function that is close to0 near a singularity,
and 1 otherwise. There may be locations which can be reach both with or without
a singular configuration of the robot arm; in this case, because the configuration
value function has a very low value, the planner will avoid itand choose a non-
singular solution. There may also be a situation where the singular configuration
cannot be avoided, for example, when the laser probe looks down on the table and
theirZ axes are aligned. In this case, all the solutions are singular configurations
and cannot be avoided. For this reason, the function which weights the singulari-
ties is not reccommended to be zero, and further care is required when generating
the motion instructions for the robot. As a final remark, the constraints that can
be specified using the configuration map arestatic, i. e. they are not related to the
speeds or accelerations of the system; they only restrict the instantaneous posi-
tions of the robot.

3.7. Performance criteria

This section defines a cost function for evaluating a path computed by a plan-
ning algorithm, in order to formalize the requirements presented in Section 2.

13

The effects of a suboptimal path may be one of:

• Delays in the scanning process

• High accelerations and speeds for the rotary table

There are maximum limits on the absolute values of the rotarytable angular speed
and acceleration,ωmax andamax . If a planned path exceeds these limits, the robot
arm has to stop and wait for the table to rotate in a correct position, while the table
is moving at its maximum speed or acceleration. This is the worst case possible,
mainly because, due to a poor planned path, the scanning process is delayed. If the
planned path does not exceed the speed and acceleration limits, the rotary table
motion is smooth and no delays occur in the scanning process.

Therefore, the main objective of the planning algorithms presented here is
finding a path that avoids the obstacles on the configuration map, and respects the
speed and acceleration limits.

An essential feature of the planning algorithm will be its ability to run in real
time, while the scanning process takes place. Therefore, the optimality of the path
computed is less important, and for this reason, this paper will focus on faster, but
suboptimal, heuristic algorithms.

Let n be the number of discrete time steps for a given planning problem. The
initial conditions are the rotary table angleθ

(0)
R and the rotary table angular veloc-

ity ω
(0)
R . The planner will compute the anglesθ

(1)
R throughθ

(n)
R , which are obtained

by integrating the angular velocitiesω(0)
R to ω

(n−1)
R or performing a double inte-

gration of the angular accelerationsa
(0)
R to a

(n−1)
R .

During the discrete momentsk andk+1 , which correspond to continuous time
momentstk andtk+1 = tk + ∆t , the table rotates using the constant acceleration
a

(k)
R . Therefore,

ω
(k+1)
R = ω

(k)
R + a

(k)
R ∆t (34)

θ
(k+1)
R = θ

(k)
R + ω

(k)
R ∆t + a

(k)
R

(∆t)2

2
(35)

The penalty due to rotary table motion (high speeds or high accelerations) can be
expressed as:

Caω =
n−1∑

i=0

(

ka

(

a
(i)
R

)2

+ kω

(

ω
(i)
R + a

(i)
R ∆t

)2
)

(36)

14

The coefficientska and kω are scalar weights for the angular acceleration and
speed of the rotary table, and they may be used for tuning the algorithms.

The cost due to advancing on the gray region of configuration map can be
defined as:

Cadv =
n∑

i=1

(

1 − fR

(

θi, T
(i)
L

))

(37)

If the robot at stepi can position the laser probe at the positionT
(i−1)
L , but it

cannot reachT (i)
L by rotating the table in the time∆t with respect to the maximum

acceleration and speed, the scanning process has to wait until the rotary table
comes into an acceptable position, so that the robot is able to reachT (i)

L .
Therefore, a delay in the scanning process is introduced, and it will be named

d(i). The delay depends on the amount of the rotation needed, and the maximum
speed and acceleration limits. By using a trapezoidal acceleration profile, the
delay can be computed. If the table rotation can be performedin the time∆t,
no delay is introduced from time stepsi − 1 to i, and therefore,d(i) = 0. By
summing the delays for every time step and weighting them with the scalarkd, the
total delay cost for a given path is:

Cdelay = kd

n∑

i=1

d(i) (38)

The total cost function of a given path will be:

Cpath

(

θ
(1...n)
R , ω

(0...n−1)
R , a

(0...n−1)
R , d(1...n)

)

= Caω + Cdelay + Cadv (39)

4. Algorithms

Any planning algorithm presented here will start from an initial condition vec-
tor of the rotating system, which contains the rotary table angleθ

(0)
R and the rotary

table angular velocityω(0)
R . The destination is not fixed, the planned path has only

to reach the last column in the configuration map, at any rotary angle and angular
velocity,θ(n)

R andω
(n)
R . After the map is traversed, the scanning trajectory is com-

pleted and the rotary table may either decelerate and stop, or prepare for another
scanning trajectory.

Related work in planning algorithms focus on two or more dimensions in the
configuration space (Latombe et al., 1999), (M. Sharir, 2004). Successful so-
lutions include roadmap-based planners, which use a graph that represents the

15

connectivity of the free configuration space, and potentialfield methods (Y. K.
Hwang, N. Ahuja, 1992), which represent forbidden areas as repulsive forces
and goals as attractive forces, allowing the planning problem to be solved using
gradient-based optimization method. Recent approaces use genetic algorithms
(Kazem et al., 2008), probabilistic methods and random sampling schemes (J.
Barraquand et al., 1997).

The planning problem presented in this article is similar toa smooth path
finding problem for a point moving in a 2D space; however, the second dimension
represents the time, since the duration of the motion and thespeed profile for the
laser sensor with respect to the workpiece are known a priori. Therefore, the state-
of-art algorithms for 2D problems cannot be applied directly, since obviously the
system cannot turn back in time, but at every time step it advances on the map
with one increment.

The planning problem has speed and acceleration constraints, and therefore
it can be considered nonholonomic Tanner et al. (2000). A possible solution is
to expand the configuration space with a third dimension representing the rota-
tional speed of the table; in this way, the problem can be solved optimally using a
Dijkstra-like algorithm S. M. LaValle et al. (2006) and Cormen et al. (2000).

4.1. Rotate when out of range

This algorithm, given in pseudocode below, is the simplest strategy for rotating
the table. Whenever the trajectory hits an obstacle on the binary configuration
map, the algorithm finds the minimum amount of rotation that gets out of the
forbidden map area.

By using this solution, the path computed will touch the forbidden areas (Fig. 7),
which is not desirable, and every time the table has to turn, the laser scanner will
wait until the computed rotation angle is reached. This approach does not obey the
prescribed timing characteristics of the scanning trajectory, but it allows the laser
sensor to reach all the programmed locations and extract the3D data successfully.

In this and all subsequent examples, the time step used is∆t = 0.1 s , therefore
the test motion, which has 200 discrete steps, takes 20 seconds to complete, unless
otherwise stated.

This is a trivial strategy which is actually used as the fall-back mechanism.

4.2. Local maxima search

This algorithm attempts to use the graylevel configuration map as a potential
field, and at every time step, i. e. on every column on the map, steer the table
towards a local maxima of the current column. The speed of steering, and also

16

Figure 7: Sample solution for Algorithm 1. The planned
path touches the edges of the obstacles.

the change in speed, are weighted according to the performance criteria specified
previously, in order to ensure a smooth motion.

This approach works better than the first method; however, itis sensitive to
local maximas in the graylevel map, which in many cases may lead to deadlock
situations.

(a)

(b)

(c)

(d)

Figure 8: (a) Local maxima guide path (c) Angular speed (smooth path)[deg/s]
(b) Smoothed local maxima path (d) Angular acceleration[deg/s2]

The guide path cannot be followed exactly, because it is possible to have sharp
corners (see Fig. 8a) , which require high instantaneous acceleration rates. Instead,
the path is smoothed (Fig. 8b,c,d) so that it can be followed much easier.

The experiments show that the results are much better than inthe first case,
as the planned path departs from the obstacles before touching them. For many
practical cases, the planned path is smooth and does not introduce any delay in
the scanning process. Since a local maxima can be found in constant time by
searching over a finite set of angle values, and the smoothingcan also be done
with a finite number of computations at every step, this algorithm is able to per-

17

form the planning in real time. The main disadvantage of thisalgorithm is that
the planned path may have high acceleration rates, sometimes much higher than
necessary. Also, while the local maxima guide is not touching the obstacles, there
is no guarantee that the smoothed path will have the same property. Should the
smoothed path reach a forbidden area on the map, Algorithm 1 will provide a
fall-back mechanism.

4.3. A Dijkstra-like algorithm

The Dijkstra algorithm finds the minimal cost path through a graph with pos-
itive weights (or costs) on its edges, from a given node to allthe other nodes that
can be reached from it Cormen et al. (2000). Given the discretemodelling of the
planning problem, it can be formulated in terms of graph theory.

In order to be able to put constraints on the speeds and accelerations, a third
dimension has to be added to the configuration space, the angular velocity. The
graph nodes form a finite 3D matrix, as they map to a continuous3D space, hav-
ing on the first dimension the rotary table angleθ , on the second dimension the
continuous timet , and on the third dimension, the angular velocityω. A discrete
representation(i, j, k) maps to an unique continuous configuration(θi, tj, ωk) .
The reverse transform, from continuous to discrete, assigns a single discrete node
(i, j, k) to a closed interval of continuous values:

θi −
∆θ
2

≤ θ < θi + ∆θ
2

tj −
∆t
2

≤ t < tj + ∆t
2

ωk −
∆ω
2

≤ ω < ωk + ∆ω
2

⇒

i

j

k

 (40)

wherei = c2d(θi), θi = d2c(i) (see Eq. 7), and similar mappings are used fort

andω.
The method for obtaining a Dijkstra-like algorithm for a continuous problem

is presented in S. M. LaValle et al. (2006).
From the node(θi, tj, ωk), is it possible to advance using the accelerationa

and reach the node corresponding to(θi + ωk ∆t + a
(∆t)2

2
, tj + ∆t, ωk + a∆t).

This is an edge in the graph having the costC∗

edge = ka a2 .
The costs put on velocities are modelled as costs into nodes.Every node

corresponding to(θi, tj, ωk) has a velocity cost equal tokω (ωk)
2.

Also, every node has a cost corresponding to equation (37), which is equal to
1 − fR(θi, T

(j)
L) . Therefore, the cost of a node is:

Cnode = kω(ωk)
2 + 1 − fR

(

θi, T
(j)
L

)

(41)

18

(a)

(b)

(c)

(d)

Figure 9: Examples for Dijkstra algorithm:
(a) Path computed for a binary configuration map
(b) Path computed for a grayscale configuration map
(c) Angular speed for the grayscale path[deg/s]
(d) Angular acceleration for the grayscale path[deg/s2]

The costs on nodes on a graph can be transferred on the incoming edges, therefore
the edge cost becoming:

Cedge = ka a2 + kω(ωk)
2 + 1 − fR

(

θi, T
(j)
L

)

(42)

If a delay has to be introduced, the edge cost increases with acomponent
corresponding toCdelay from equation (38). This allows edges to traverseCobs, in
order to ensure that a solution is found even ifCfree is not conex, but these edges
should have a much higher cost than the others, so that this solution is selected as
a last resort.

By summing the edge costs for an entire path, the cost functionis equal to
Cpath from equation (39).

Because of this mode of cost assignment, the Dijkstra algorithm will minimize
Cpath , finding the optimal solution for the discretized problem.

An example of running the Dijkstra algorithm over a binary configuration map
is given in Fig. 9. This is the smoothest possible solution for the rotary table (with
respect toCaω), but the path touches the obstacles, and therefore the robot arm
will reach its joint limits, which is not desirable.

Running the same algorithm on the graylevel configuration mapgives the re-
sult from Fig. 9b, where the planned path does not touch the edges of the obsta-
cles, the motion is smooth and the acceleration rates are much lower than those in
Fig. 8, obtained with the Local Maxima heuristic algorithm.As the discretization
steps become smaller, the solution found by the Dijkstra algorithm converges to
the optimal solution for the continuous problem.

19

The graph used in this algorithm can grow very large, as its size grows with the
third power of the number of discretization steps of the 3D configuration space.
If the space uses 100 steps on every dimension, the graph has 1,000,000 nodes,
which is too much for a real time solution. However, the Dijkstra algorithm offers
a reference trajectory, to which the solutions found by the other algorithms can be
compared.

4.4. ”Ray Shooting” heursitic algorithm

This algoritm attempts to provide a better solution than thelocal maxima
heuristic, while retaining the possibility of real time planning. This algorithm
does not have to find the optimal solution, but it has to compute a smooth mo-
tion, comparable to the one obtained with the Dijkstra algorithm in most practical
situations.

At every time stepk, the algorithm looks aheadp future time steps, that is,
from k + 1 throughk + p . Over this range, it tries to perform a motion with
constant angular acceleration, to ensure the smoothness ofthe planned path. The
algorithm uses a finite set of acceleration valuesaj, j = 1, na, and for every
accelerationaj , a possible path is evaluated, starting from the current state and
spanning on the followingp time steps. From the set of paths, the path having
minimal cost value is chosen. This path corresponds to an acceleration equal to
aj,best, and the motion from time stepk through time stepk + 1 will be performed
using this acceleration. The planning algorithm advances to the next step and re-
computes the paths, therefore at every time step it makes a decision. This means
that at every time step there is a finite number of computations that have to be
done, which make possible running the algorithm in real time.

Computing the path using a given acceleration is done by applying equations
(34) and (35) over the desired range, and evaluating the costis done using (39).
The path computation stops if an obstacle is reached, and a cost penaltyCpen is
added to the path, in order to favor the rays that did not hit any obstacle.

The accelerations considered in this algorithm form set of values, between
a0 = amin andamax . The complete set hasna elements(p > 1) :

A =
[
0, ±a0, ±p a0, ±p2 a0, ±p3 a0, ...
︸ ︷︷ ︸

na elements

]
(43)

The number of operations performed by this algorithm can be further limited by
using a pruning scheme: if a ray is not going to obtain a bettercost than the best
path obtained so far at the current step, the computation stops.

20

An example of running the Ray Shooting heuristic over the tested configura-
tion map is given in Fig. 10. The figures show the path chosen until the current
step, and the rays which determine the choice for the next step. In this example,
the rays analyze the configuration map within 70 discrete time steps ahead.

In the first graph, Fig. 10a, the rays can ”see” a solution for avoiding the
obstacles by turning the table clockwise, i. e.θR decreasing, thus avoiding both
obstacles on their ”left” side. In the second graph, the raysbegin to see an alternate
solution, which would avoid the second obstacle on its ”right” side, by changing
the direction of the rotation of the table. Since the acceleration needed to change
the rotation is smaller than the acceleration needed to avoid the second obstacle on
the left, the planner chooses to reverse the rotation direction, resulting the solution
from Fig. 10c.

In the last graph, one can view the planned solution, which isa smooth tra-
jectory for the rotary table, and does not touch the obstacles, therefore the robot
arm is not driven close to its joint limits. This solution satisfies the design require-
ments, has a shape similar to the one computed by Dijkstra algorithm, and it can
be computed in real time.

The solution obtained by this algorithm is much smoother than the local max-
ima path, and is closer to the path computed by the Dijkstra algorithm. The ac-
celeration rate for the two paths is comparable, as it can be observed by com-
paring Fig. 11 with Fig. 9. The planned path exhibits some small peaks in the
acceleration, whose effects are minor and can be removed with a smoothing post-

21

(a)

(b)

(c)

(d)

Figure 10: Ray Shooting example:
(a) The rays found a solution by avoiding both obstacles on the left side
(b) One of the rays avoids the second obstacle on the right side
(c) The algorithm decides to avoid the second obstacle on theright
(d) The algorithm has almost finished.

Figure 11: Speed and acceleration obtained by Ray Shooting algorithm

Figure 12: Another example of Ray Shooting algorithm. The planned path wraps around.

22

processing routine. There is also a higher tendency of the planned path being in
the proximity of the obstacles, compared the Dijkstra solution.

In Fig. 12, another example of a path planned with the Ray Shooting algorithm
is presented. The path starts from38 ◦ and ends at637 ◦, or 83 ◦ when wrapped
around, the total amount of rotation being675 ◦.

5. Conclusions

This article presented the problem of solving a redundant 7-DOF inverse kine-
matics problem, which usually has an infinite number of solutions. The motion
planning problem has two constraints, the speed and the acceleration of the rotary
table, which are used in order to achieve a smooth table motion, since there is no
rigid mechanical fixture between the table and the scanned part.

The problem was modelled as finding the minimal cost path through a con-
figuration space. The Dijkstra algorithm gave the optimal solution to the prob-
lem, however it was too slow in order to use it in a real time implementation.
A heuristic algorithm was proposed, and it is able to computea smooth path in
real time, while respecting the imposed restrictions. The algorithm also has a fall-
back mechanism for difficult situations, which guarantees finding a solution if one
exists.

The heuristic algorithm is implemented as a module for the laser scanning
software, and it runs on the PC which deserves the 3D reconstruction system,
performing the real-time planning of the rotary table and sending the planned
result to the robot and rotary table controllers.

The proposed algorithm can also be used in other applications, which involve
a robot moving on a 3D continuous path along a workpiece, performing a techno-
logical operation, i. e. welding, edge polishing, and thereis a redundant degree of
freedom whose motion has to be planned in order to achieve various constraints,
such as collision and singularity avoidance, while maintaining a smooth trajectory.

Acknowledgements

This work is funded by the National University Research Council, in the
framweork of the National Plan for Research, Development andInnovation.

23

References

Forward Kinematics: The Denavit-Hartenberg Convention. In: John Wiley and
Sons, Inc., Robot Modeling and Control. 2005, p. 71-83.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

P. I. Corke, A robotics toolbox for MATLAB, IEEE Robotics and Automation
Magazine, Vol. 3, n. 1, pp. 24-32, March 1996.

Th. Borangiu, F. Ionescu, Robot Kinematics, In: AGIR and Editura Academiei
Romne, Robot Modelling and Simulation, Bucharest 2002, p. 122-140

Adept Technology, Inc., Six-Axis Robot Configuration Singularities, March 2007

T. H. Cormen et. al., Single Source Shortest Paths, In: The MITPress, Introduc-
tion to Algorithms, 2000, p. 527-531.

G. Impoco, P. Cignoni, R. Scopigno, A Six-Degrees-of-FreedomPlanning Algo-
rithm for the Acquisition of Complex Surfaces, International Journal of Shape
Modeling, Vol. 11, no. 1, June 2005, p. 1-23.

Herbert G. Tanner and Kostas J. Kyriakopoulos, Nonholonomic Motion Planning
for Mobile Manipulators, Proceedings of ICRA 2000

B. I. Kazem, A. I. Mahdi, A. T. Oudah, Motion Planning for a RobotArm by
Using Genetic Algorithm, Jordan Journal of Mechanical and Industrial Engi-
neering, Vol. 2, No. 3, Sep. 2008, p. 131-136

J. Barraquand et al. (1997) A Random Sampling Scheme for Path Planning, The
International Journal of Robotics Research, Vol. 16, No. 6, 759-774 (1997)

Micha Sharir, Algorithmic Motion Planning, in Handbook of Discrete and Com-
putational Geometry Second Edition, CRC Press, Chapter 47, 2004

D. Halperin, L.E. Kavraki, J.C. Latombe, Robot Algorithms. InAlgorithms and
Theory of Computation Handbook, CRC Press, Chapter 21, pp. 21-1–21-21,
1999.

Y.K. Hwang, N. Ahuja, A potential field approach to path planning, IEEE Trans-
actions on Robotics and Automation, Vol. 8, Issue 1, p.23-32

24

